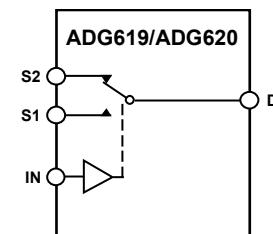


FEATURES

- 6.5 Ω (max) on resistance
- 0.8 Ω (max) on-resistance flatness
- 2.7 V to 5.5 V single supply
- ± 2.7 V to ± 5.5 V dual supply
- Rail-to-rail operation
- 8-lead SOT-23 package, 8-lead MSOP package
- Typical power consumption (<0.1 μ W)
- TTL/CMOS compatible inputs

APPLICATIONS

- Automatic test equipment
- Power routing
- Communication systems
- Data acquisition systems
- Sample-and-hold systems
- Avionics
- Relay replacement
- Battery-powered systems


GENERAL DESCRIPTION

The ADG619/ADG620 are monolithic, CMOS single-pole, double-throw (SPDT) switches. Each switch conducts equally well in both directions when on.

The ADG619/ADG620 offer low on resistance of 4 Ω , which is matched to within 0.7 Ω between channels. These switches also provide low power dissipation, yet give high switching speeds. The ADG619 exhibits break-before-make switching action, thus preventing momentary shorting when switching channels. The ADG620 exhibits make-before-break action.

The ADG619/ADG620 are available in an 8-lead SOT-23 package and an 8-lead MSOP package.

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC 1 INPUT

02817-001

Figure 1.

PRODUCT HIGHLIGHTS

1. Low On resistance (R_{ON}): 4 Ω typ.
2. Dual ± 2.7 V to ± 5.5 V or single 2.7 V to 5.5 V supply.
3. Low power dissipation. CMOS construction ensures low power dissipation.
4. Fast t_{ON}/t_{OFF} .
5. Tiny 8-lead SOT-23 package and 8-lead MSOP package.

Table 1. Truth Table for the ADG619/ADG620

IN	Switch S1	Switch S2
0	ON	OFF
1	OFF	ON

Rev. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	1	Absolute Maximum Ratings	6
Applications.....	1	ESD Caution.....	6
Functional Block Diagram	1	Pin Configuration and Function Descriptions.....	7
General Description.....	1	Typical Performance Characteristics	8
Product Highlights	1	Terminology	10
Revision History	2	Test Circuits.....	11
Specifications.....	3	Outline Dimensions	13
Dual Supply	3	Ordering Guide.....	14
Single Supply	5		

REVISION HISTORY

1/06—Rev. A to Rev. B

Changes to R_{ON} Values in Table 2	2
Updated Outline Dimensions	13
Changes to Ordering Guide	13

6/03—Rev. 0 to Rev. A.

Edits to Specifications	2
Changes to Ordering Guide	4
Updated Outline Dimensions	8

SPECIFICATIONS

DUAL SUPPLY¹

$V_{DD} = +5 \text{ V} \pm 10\%$, $V_{SS} = -5 \text{ V} \pm 10\%$, $GND = 0 \text{ V}$. All specifications -40°C to $+85^\circ\text{C}$, unless otherwise noted.

Table 2.

Parameter	B Version		Unit	Test Conditions/Comments
	+25°C	-40°C to +85°C		
ANALOG SWITCH				
Analog Signal Range		V_{SS} to V_{DD}	V	$V_{DD} = +4.5 \text{ V}$, $V_{SS} = -4.5 \text{ V}$
On Resistance (R_{ON})	4		Ω typ	$V_S = \pm 4.5 \text{ V}$, $I_S = -10 \text{ mA}$, Figure 15
	6.5	8.5	Ω max	
On Resistance Match Between Channels (ΔR_{ON})	0.7		Ω typ	$V_S = \pm 4.5 \text{ V}$, $I_S = -10 \text{ mA}$
	1.1	1.35	Ω max	
On Resistance Flatness ($R_{FLAT(ON)}$)	0.7	0.8	Ω typ	$V_S = \pm 3.3 \text{ V}$, $I_S = -10 \text{ mA}$
	1.15	1.2	Ω max	
LEAKAGE CURRENTS				
Source Off Leakage I_S (Off)	± 0.01		nA typ	$V_{DD} = +5.5 \text{ V}$, $V_{SS} = -5.5 \text{ V}$
	± 0.25	± 1	nA max	$V_S = \pm 4.5 \text{ V}$, $V_D = \mp 4.5 \text{ V}$, Figure 16
Channel On Leakage I_D , I_S (On)	± 0.01		nA typ	$V_S = V_D = \pm 4.5 \text{ V}$; Figure 17
	± 0.25	± 1	nA max	
DIGITAL INPUTS				
Input High Voltage, V_{INH}		2.4	V min	
Input Low Voltage, V_{INL}		0.8	V max	
Input Current				
I_{INL} or I_{INH}	0.005	± 0.1	μA typ	
			μA max	
C_{IN} , Digital Input Capacitance	2		pF typ	
DYNAMIC CHARACTERISTICS ²				
ADG619				
t_{ON}	80		ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$
	120	155	ns max	$V_S = 3.3 \text{ V}$; Figure 18
t_{OFF}	45		ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$
	75	90	ns max	$V_S = 3.3 \text{ V}$; Figure 18
Break-Before-Make Time Delay, t_{BBM}	40		ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$
		10	ns min	$V_{S1} = V_{S2} = 3.3 \text{ V}$; Figure 19
ADG620				
t_{ON}	40		ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$
	65	85	ns max	$V_S = 3.3 \text{ V}$; Figure 18
t_{OFF}	200		ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$
	330	400	ns max	$V_S = 3.3 \text{ V}$; Figure 18
Make-Before-Break Time Delay, t_{MBB}	160		ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$
		10	ns min	$V_S = 0 \text{ V}$; Figure 20
Charge Injection	110		pC typ	$V_S = 0 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$, Figure 21
Off Isolation	-67		dB typ	$R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, $f = 1 \text{ MHz}$, Figure 22
Channel-to-Channel Crosstalk	-67		dB typ	$R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, $f = 1 \text{ MHz}$, Figure 23
Bandwidth -3 dB	190		MHz typ	$R_L = 50 \Omega$, $C_L = 5 \text{ pF}$; Figure 24
C_S (Off)	25		pF typ	$f = 1 \text{ MHz}$
C_D , C_S (On)	95		pF typ	$f = 1 \text{ MHz}$

ADG619/ADG620

Parameter	B Version +25°C	-40°C to +85°C	Unit	Test Conditions/Comments
POWER REQUIREMENTS				
I_{DD}	0.001	1.0	μA typ μA max	$V_{DD} = +5.5$ V, $V_{SS} = -5.5$ V Digital inputs = 0 V or 5.5 V
I_{SS}	0.001	1.0	μA typ μA max	Digital inputs = 0 V or 5.5 V

¹ Temperature range for B version is -40°C to +85°C.

² Guaranteed by design, not subject to production test.

SINGLE SUPPLY¹

$V_{DD} = +5 \text{ V} \pm 10\%$, $V_{SS} = 0 \text{ V}$, $GND = 0 \text{ V}$. All specifications -40°C to $+85^\circ\text{C}$, unless otherwise noted.

Table 3.

Parameter	B Version $+25^\circ\text{C}$		Unit	Test Conditions/Comments
	-40°C to $+85^\circ\text{C}$			
ANALOG SWITCH				
Analog Signal Range		0 V to V_{DD}	V	
On Resistance (R_{ON})	7		Ω typ	$V_{DD} = 4.5 \text{ V}$, $V_{SS} = 0 \text{ V}$
	10	12.5	Ω max	$V_S = 0 \text{ V}$ to 4.5 V, $I_S = -10 \text{ mA}$, Figure 15
On Resistance Match Between Channels (ΔR_{ON})	0.8		Ω typ	
	1.1	1.3	Ω max	$V_S = 0 \text{ V}$ to 4.5 V, $I_S = -10 \text{ mA}$
On Resistance Flatness ($R_{FLAT(ON)}$)	0.5	0.5	Ω typ	$V_S = 1.5 \text{ V}$ to 3.3 V, $I_S = -10 \text{ mA}$
		1	Ω max	
LEAKAGE CURRENTS				
Source Off Leakage I_S (Off)	± 0.01		nA typ	$V_{DD} = 5.5 \text{ V}$
	± 0.25	± 1	nA max	$V_S = 1 \text{ V}/4.5 \text{ V}$; $V_D = 4.5 \text{ V}/1 \text{ V}$, Figure 16
Channel On Leakage I_D , I_S (On)	± 0.01		nA typ	$V_S = V_D = 1 \text{ V}/4.5 \text{ V}$, Figure 17
	± 0.25	± 1	nA max	
DIGITAL INPUTS				
Input High Voltage, V_{INH}		2.4	V min	
Input Low Voltage, V_{INL}		0.8	V max	
Input Current I_{INL} or I_{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		± 0.1	μA max	
C_{IN} , Digital Input Capacitance	2		pF typ	
DYNAMIC CHARACTERISTICS ²				
ADG619				
t_{ON}	120		ns typ	
	220	280	ns max	$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$
t_{OFF}	50		ns typ	$V_S = 3.3 \text{ V}$; Figure 18
	75	110	ns max	$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$
Break-Before-Make Time Delay, t_{BBM}	70		ns typ	$V_S = 3.3 \text{ V}$; Figure 18
		10	ns min	$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$
				$V_{S1} = V_{S2} = 3.3 \text{ V}$; Figure 19
ADG620				
t_{ON}	50		ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$
	85	110	ns max	$V_S = 3.3 \text{ V}$; Figure 18
t_{OFF}	210		ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$
	340	420	ns max	$V_S = 3.3 \text{ V}$; Figure 18
Make-Before-Break Time Delay, t_{MBB}	170		ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$
		10	ns min	$V_S = 3.3 \text{ V}$; Figure 20
Charge Injection	6		pC typ	$V_S = 0 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$; Figure 21
Off Isolation	-67		dB typ	$R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, $f = 1 \text{ MHz}$; Figure 22
Channel-to-Channel Crosstalk	-67		dB typ	$R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, $f = 1 \text{ MHz}$; Figure 23
Bandwidth -3 dB	190		MHz typ	$R_L = 50 \Omega$, $C_L = 5 \text{ pF}$; Figure 24
C_S (OFF)	25		pF typ	$f = 1 \text{ MHz}$
C_D , C_S (ON)	95		pF typ	$f = 1 \text{ MHz}$
POWER REQUIREMENTS				
I_{DD}	0.001	1.0	μA typ	$V_{DD} = 5.5 \text{ V}$
			μA max	Digital inputs = 0 V or 5.5 V

¹ Temperature range for B version is -40°C to $+85^\circ\text{C}$

² Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

TA = 25°C, unless otherwise noted.

Table 4.

Parameter	Rating
V _{DD} to V _{SS}	13 V
V _{DD} to GND	-0.3 V to +6.5 V
V _{SS} to GND	+0.3 V to -6.5 V
Analog Inputs ¹	V _{SS} – 0.3 V to V _{DD} + 0.3 V
Digital Inputs ¹	-0.3 V to V _{DD} + 0.3 V or 30 mA (whichever occurs first)
Peak Current, S or D	100 mA (pulsed at 1 ms, 10% duty cycle max)
Continuous Current, S or D	50 mA
Operating Temperature Range Industrial (B Version)	-40°C to +85°C
Storage Temperature Range	-65°C to +150°C
Junction Temperature	150°C
MSOP Package	
θ _{JA} Thermal Impedance	206°C/W
θ _{JC} Thermal Impedance	44°C/W
SOT-23 Package	
θ _{JA} Thermal Impedance	229.6°C/W
θ _{JC} Thermal Impedance	91.99°C/W
Lead Temperature, Soldering (10 sec)	300°C
IR Reflow, Peak Temperature	220°C

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating may be applied at any one time.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

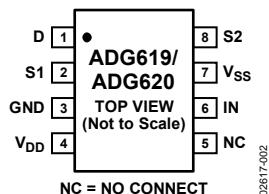


Figure 2. 8-Lead SOT-23
(RT-8)

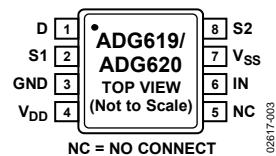


Figure 3. 8-Lead MSOP
(RM-8)

Table 5.

Pin No.	Mnemonic	Description
1	D	Drain Terminal. May be an input or output.
2	S1	Source Terminal. May be an input or output.
3	GND	Ground (0 V) Reference.
4	V _{DD}	Most positive power supply pin.
5	NC	Not internally connected.
6	IN	Logic Control Input Pin.
7	V _{SS}	Most negative power supply pin in a dual-supply application. In single-supply applications, this pin should be tied to ground at the device.
8	S2	Source Terminal. May be an input or output.

TYPICAL PERFORMANCE CHARACTERISTICS

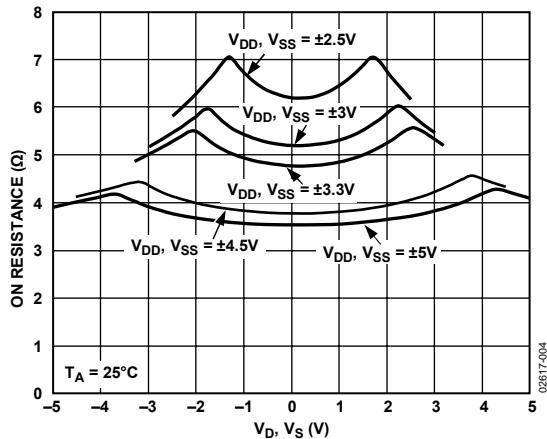


Figure 4. On Resistance vs. V_D (V_S) (Dual Supply)

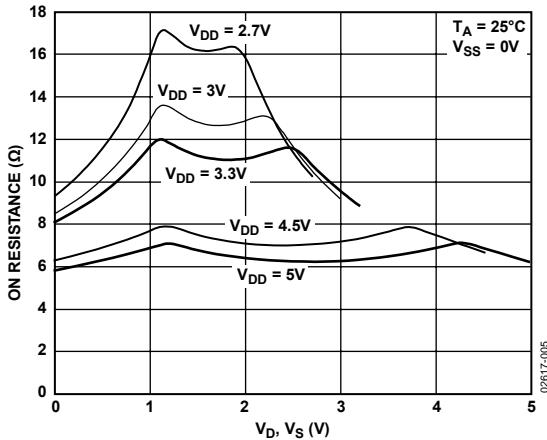


Figure 5. On Resistance vs. V_D (V_S) (Single Supply)

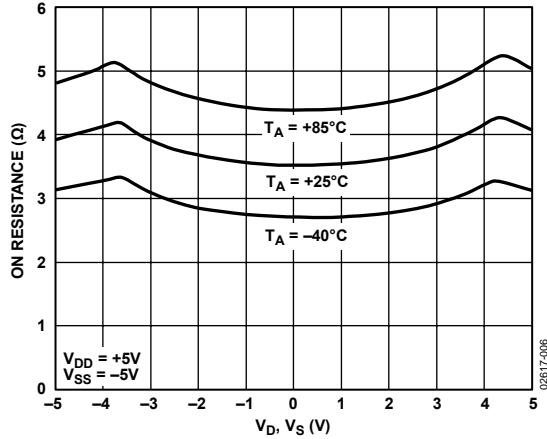


Figure 6. On Resistance vs. V_D (V_S) for Different Temperatures (Dual Supply)

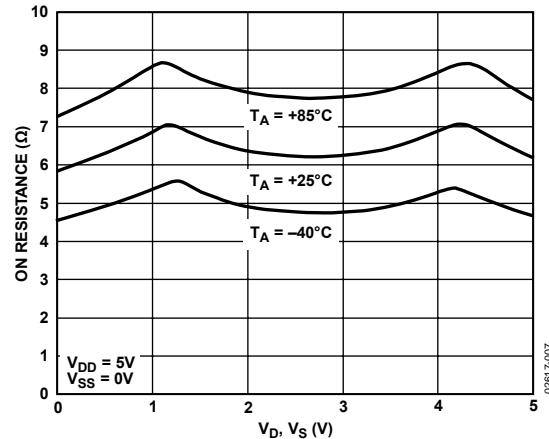


Figure 7. On Resistance vs. V_D (V_S) for Different Temperatures (Single Supply)

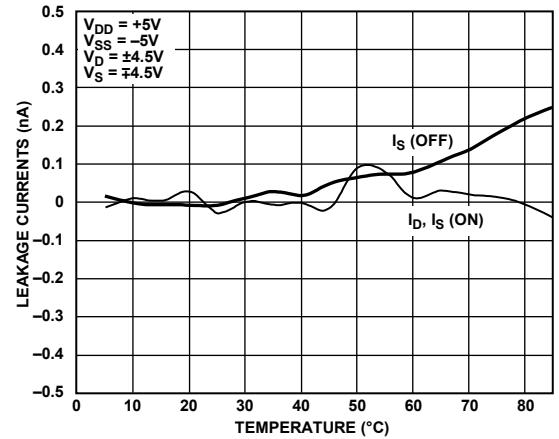


Figure 8. Leakage Currents vs. Temperature (Dual Supply)

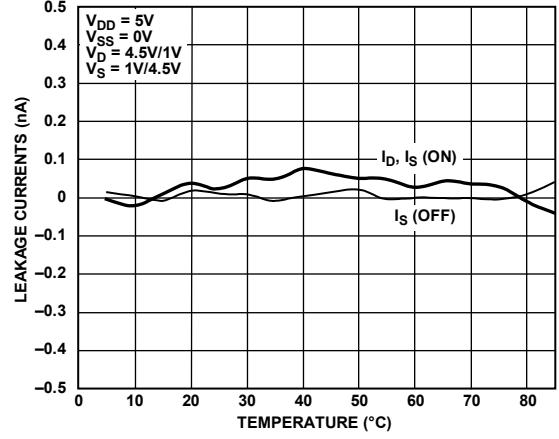


Figure 9. Leakage Currents vs. Temperature (Single Supply)

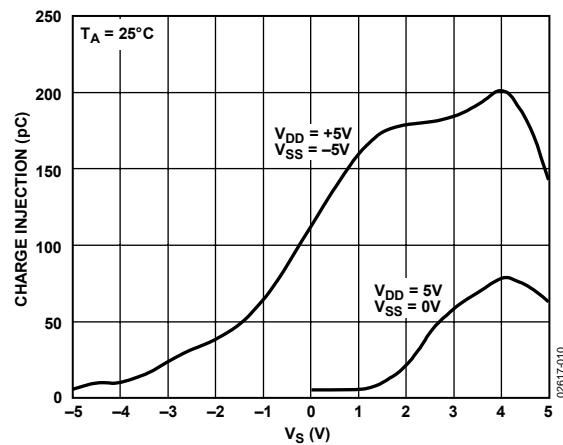


Figure 10. Charge Injection vs. Source Voltage

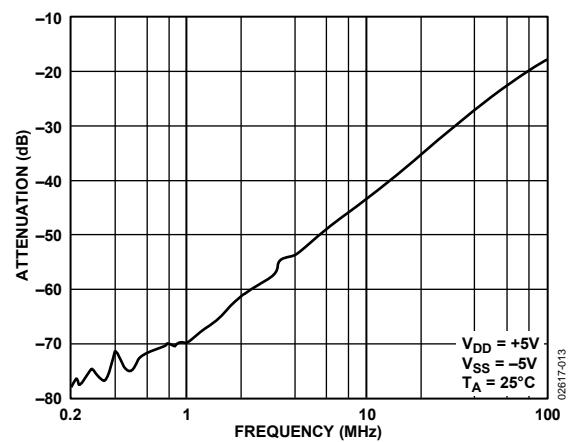


Figure 13. Crosstalk vs. Frequency

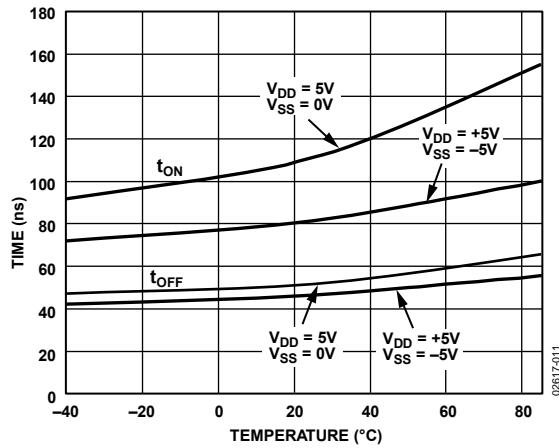


Figure 11. t_{ON}/t_{OFF} Times vs. Temperatures

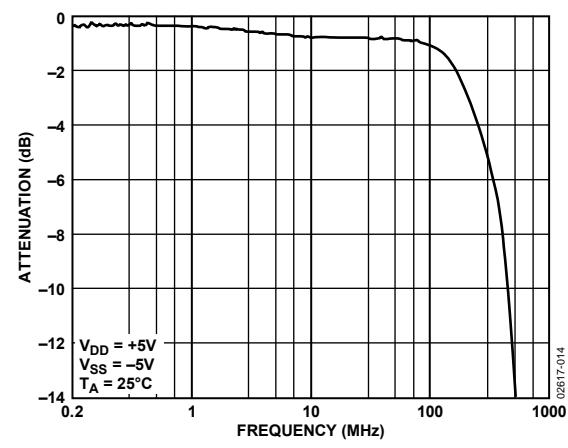


Figure 14. On Response vs. Frequency

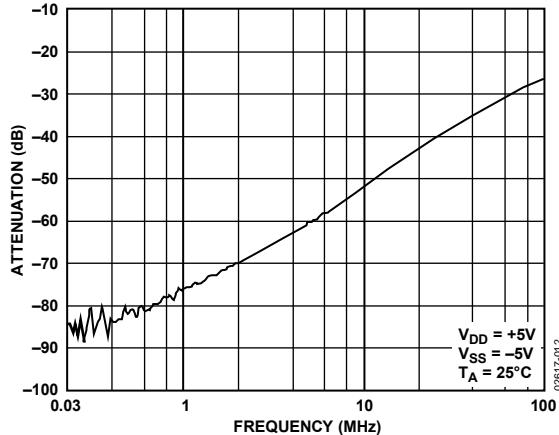


Figure 12. Off Isolation vs. Frequency

TERMINOLOGY

Table 6.

Mnemonic	Description
I_{DD}	Positive Supply Current.
I_{SS}	Negative Supply Current.
R_{ON}	Ohmic resistance between D and S.
ΔR_{ON}	On resistance match between any two channels, that is, $R_{ON\ Max} - R_{ON\ Min}$.
$R_{FLAT\ (ON)}$	Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
$I_s\ (Off)$	Source leakage current with the switch off.
$I_D, I_s\ (On)$	Channel leakage current with the switch on.
$V_D\ (V_S)$	Analog voltage on Terminals D, S.
V_{INL}	Maximum Input voltage for Logic 0.
V_{INH}	Minimum input voltage for Logic 1.
$I_{INL}\ (I_{INH})$	Input current of the digital input.
$C_s\ (Off)$	Off switch source capacitance.
$C_D, C_S\ (On)$	On switch capacitance.
t_{ON}	Delay between applying the digital control input and the output switching on.
t_{OFF}	Delay between applying the digital control input and the output switching off.
t_{MBB}	On time is measured between the 80% points of both switches, when switching from one address state to another.
t_{BBM}	Off time or On time is measured between the 90% points of both switches, when switching from one address state to another.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.
Crosstalk	A measure of unwanted signal coupled through from one channel to another as a result of parasitic capacitance.
Off Isolation	A measure of unwanted signal coupling through an off switch.
Bandwidth	The frequency response of the on switch.
Insertion Loss	The loss due to the on resistance of the switch.

TEST CIRCUITS

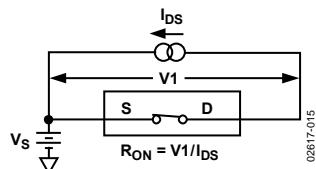


Figure 15. On Resistance

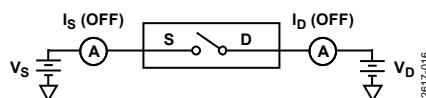


Figure 16. Off Leakage

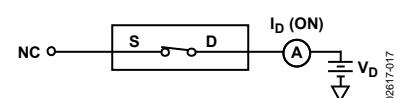


Figure 17. On Leakage

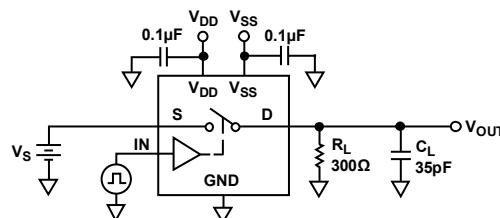


Figure 18. Switching Times

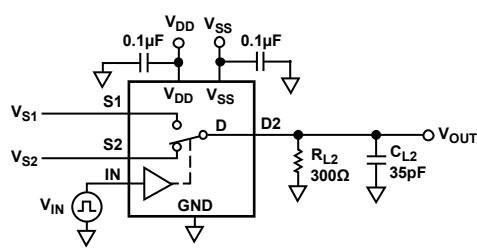
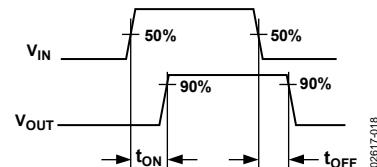
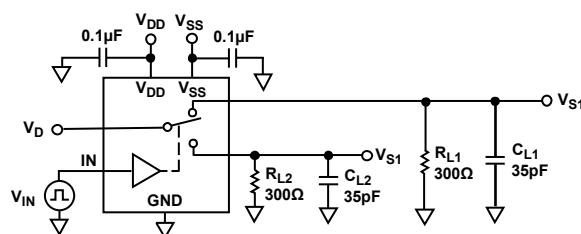
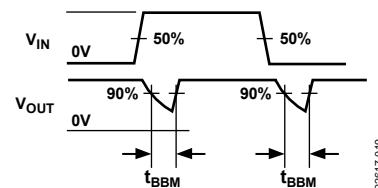
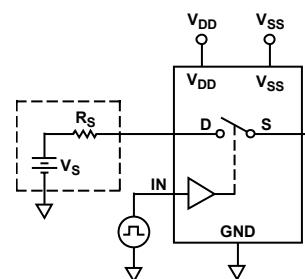
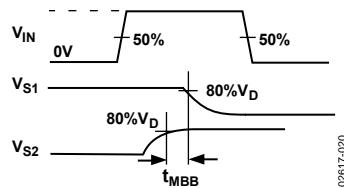
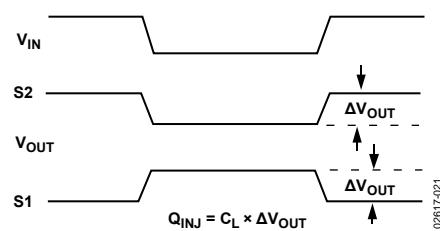
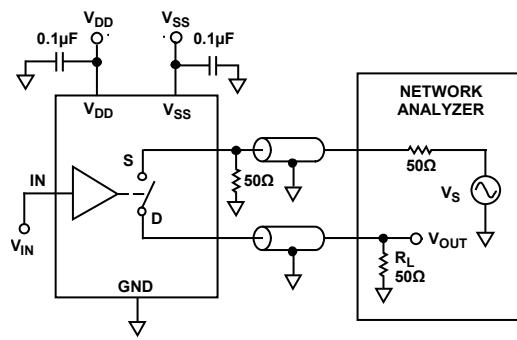
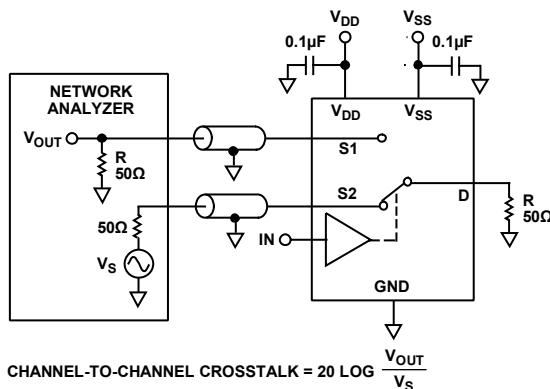
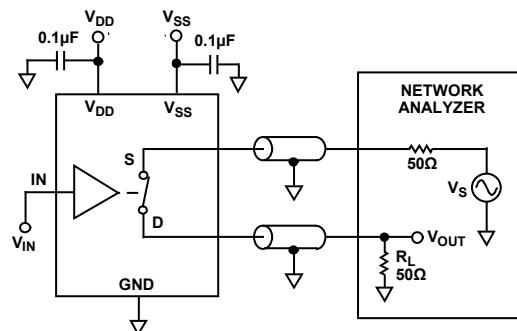








Figure 19. Break-Before-Make Time Delay, t_{BBM} (ADG619 Only)Figure 20. Make-Before-Break Time Delay, t_{MBB} (ADG620 Only)

Figure 21. Charge Injection


ADG619/ADG620

$$\text{OFF ISOLATION} = 20 \log \frac{V_{OUT}}{V_S}$$

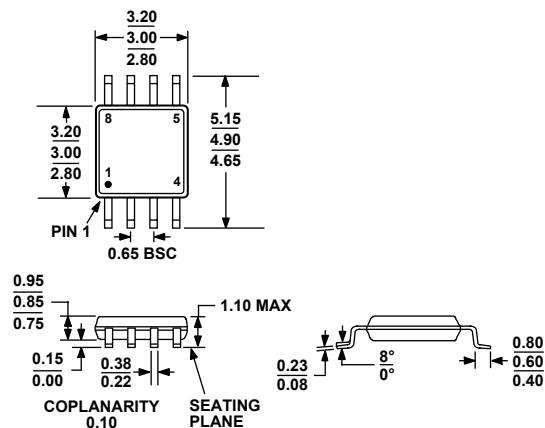
02817-022


Figure 22. Off Isolation

$$\text{CHANNEL-TO-CHANNEL CROSSTALK} = 20 \log \frac{V_{OUT}}{V_S}$$

02817-023

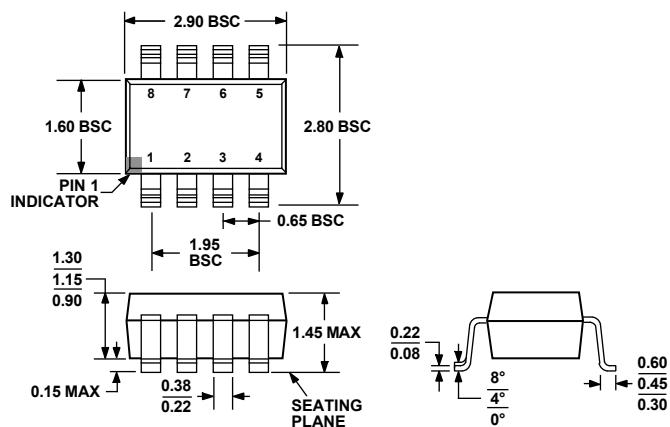
Figure 23. Channel-to-Channel Crosstalk



$$\text{INSERTION LOSS} = 20 \log \frac{V_{OUT \text{ WITH SWITCH}}}{V_{S \text{ WITHOUT SWITCH}}}$$

02817-024

Figure 24. Bandwidth


OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-AA

Figure 25. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)

Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-178-BA

Figure 26. 8-Lead Small Outline Transistor Package [SOT-23]
(RT-8)

Dimensions shown in millimeters

ADG619/ADG620

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding ¹
ADG619BRM	−40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SVB
ADG619BRM-REEL	−40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SVB
ADG619BRM-REEL7	−40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SVB
ADG619BRMZ ²	−40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SCC
ADG619BRMZ-REEL ²	−40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SCC
ADG619BRMZ-REEL7 ²	−40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SCC
ADG619BRT-REEL	−40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RT-8	SVB
ADG619BRT-REEL7	−40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RT-8	SVB
ADG619BRT-500RL7	−40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RT-8	SVB
ADG619BRTZ-REEL ²	−40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RT-8	SCC
ADG619BRTZ-REEL7 ²	−40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RT-8	SCC
ADG619BRTZ-500RL7 ²	−40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RT-8	SCC
ADG620BRM	−40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SWB
ADG620BRM-REEL	−40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SWB
ADG620BRM-REEL7	−40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SWB
ADG620BRMZ ²	−40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	S21
ADG620BRT-REEL	−40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RT-8	SWB
ADG620BRT-REEL7	−40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RT-8	SWB
ADG620BRTZ-REEL7 ²	−40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RT-8	S21

¹ Branding on SOT-23 and MSOP packages is limited to three characters due to space constraints.

² Z= Pb-free part.

NOTES

NOTES