

GaAlAs Infrared Emitting Diodes in ø 5 mm (T-1^{3/4}) Package

Description

The TSHA550. series are high efficiency infrared emitting diodes in GaAlAs on GaAlAs technology, molded in a clear, untinted plastic package.

In comparison with the standard GaAs on GaAs technology these high intensity emitters feature about 70 % radiant power improvement.

94 8390

Features

- Extra high radiant power
- Suitable for high pulse current operation
- Standard T-1^{3/4} (ø 5 mm) package
- Angle of half intensity $\phi = \pm 24^\circ$
- Peak wavelength $\lambda_p = 875$ nm
- High reliability
- Good spectral matching to Si photodetectors

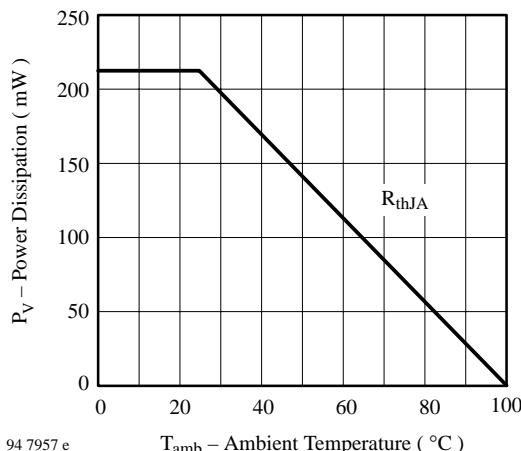
Applications

Infrared remote control and free air transmission systems with high power and comfortable radiation angle requirements in combination with PIN photodiodes or phototransistors.

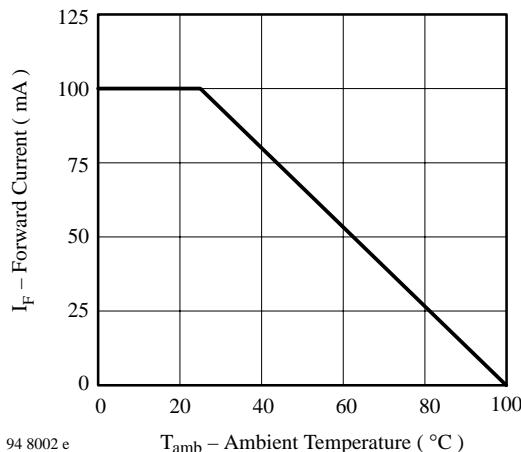
Because of the reduced radiance absorption in glass at the wavelength of 875 nm, this emitter series is also suitable for systems with panes in the transmission range between emitter and detector.

Absolute Maximum Ratings

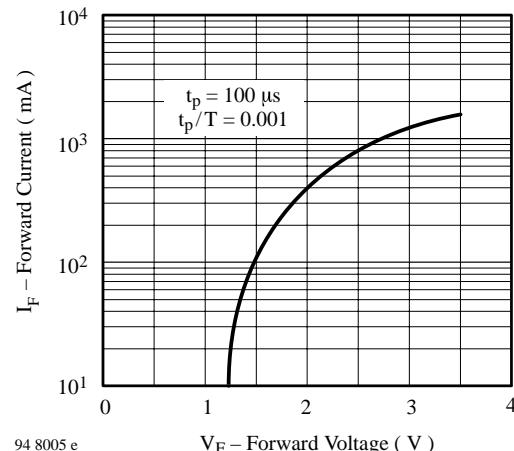
Tamb = 25°C


Parameter	Test Conditions	Symbol	Value	Unit
Reverse Voltage		V _R	5	V
Forward Current		I _F	100	mA
Peak Forward Current	t _p /T = 0.5, t _p = 100 µs	I _{FM}	200	mA
Surge Forward Current	t _p = 100 µs	I _{FSM}	2.5	A
Power Dissipation		P _V	210	mW
Junction Temperature		T _j	100	°C
Operating Temperature Range		T _{amb}	-55...+100	°C
Storage Temperature Range		T _{stg}	-55...+100	°C
Soldering Temperature	t ≤ 5sec, 2 mm from case	T _{sd}	260	°C
Thermal Resistance Junction/Ambient		R _{thJA}	350	K/W

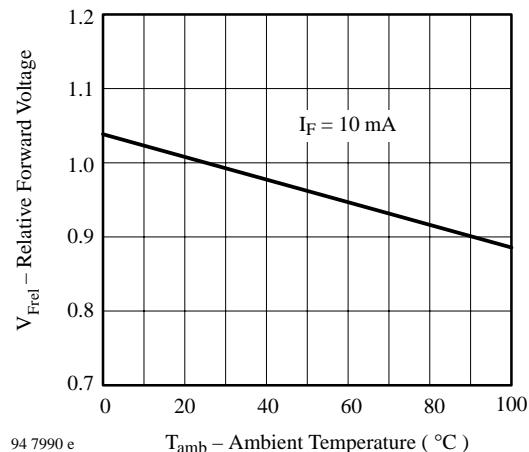
Basic Characteristics $T_{amb} = 25^\circ C$

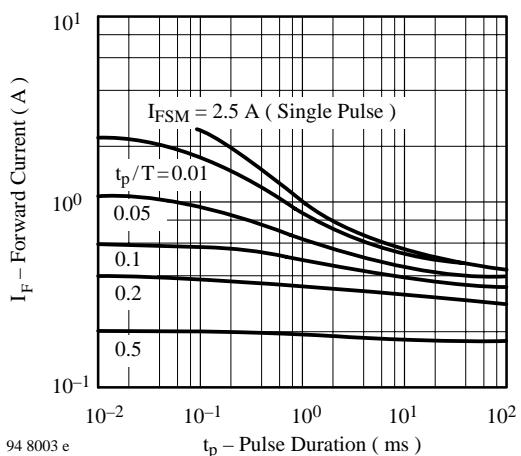

Parameter	Test Conditions	Symbol	Min	Typ	Max	Unit
Forward Voltage	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	V_F		1.5	1.8	V
Temp. Coefficient of V_F	$I_F = 100 \text{ mA}$	TK_{VF}		-1.6		mV/K
Reverse Current	$V_R = 5 \text{ V}$	I_R			100	μA
Junction Capacitance	$V_R = 0 \text{ V}, f = 1 \text{ MHz}, E = 0$	C_j		20		pF
Temp. Coefficient of ϕ_e	$I_F = 20 \text{ mA}$	TK_{ϕ_e}		-0.7		%/K
Angle of Half Intensity		ϕ		± 24		deg
Peak Wavelength	$I_F = 100 \text{ mA}$	λ_p		875		nm
Spectral Bandwidth	$I_F = 100 \text{ mA}$	$\Delta\lambda$		80		nm
Temp. Coefficient of λ_p	$I_F = 100 \text{ mA}$	TK_{λ_p}		0.2		nm/K
Rise Time	$I_F = 100 \text{ mA}$	t_r		600		ns
	$I_F = 1.5 \text{ A}$	t_r		300		ns
Fall Time	$I_F = 100 \text{ mA}$	t_f		600		ns
	$I_F = 1.5 \text{ A}$	t_f		300		ns

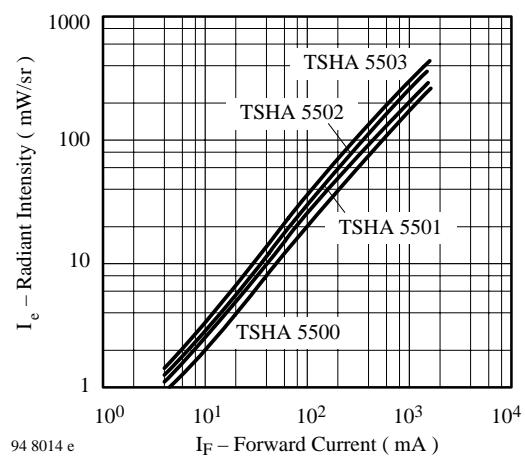
Type Dedicated Characteristics $T_{amb} = 25^\circ C$


Parameter	Test Conditions	Type	Symbol	Min	Typ	Max	Unit
Forward Voltage	$I_F=1.5\text{A}, t_p=100\mu\text{s}$	TSHA5500/5501	V_F		3.2	4.9	V
		TSHA5502/5503	V_F		3.2	4.5	V
Radiant Intensity	$I_F=100\text{mA}, t_p=20\text{ms}$	TSHA5500	I_e	12	20		mW/sr
		TSHA5501	I_e	16	25		mW/sr
		TSHA5502	I_e	20	30		mW/sr
		TSHA5503	I_e	24	35		mW/sr
	$I_F=1.5\text{A}, t_p=100\mu\text{s}$	TSHA5500	I_e	150	240		mW/sr
		TSHA5501	I_e	200	300		mW/sr
		TSHA5502	I_e	250	360		mW/sr
		TSHA5503	I_e	300	420		mW/sr
Radiant Power	$I_F=100\text{mA}, t_p=20\text{ms}$	TSHA5500	ϕ_e		22		mW
		TSHA5501	ϕ_e		23		mW
		TSHA5502	ϕ_e		24		mW
		TSHA5503	ϕ_e		25		mW

Typical Characteristics (T_{amb} = 25°C unless otherwise specified)


94 7957 e


94 8002 e


94 8005 e

94 7990 e

94 8003 e

94 8014 e

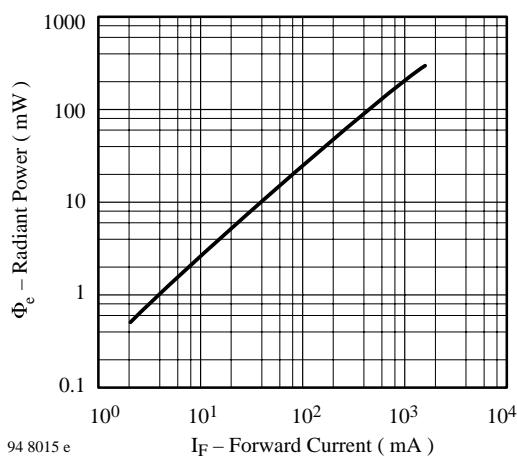


Figure 7. Radiant Power vs. Forward Current

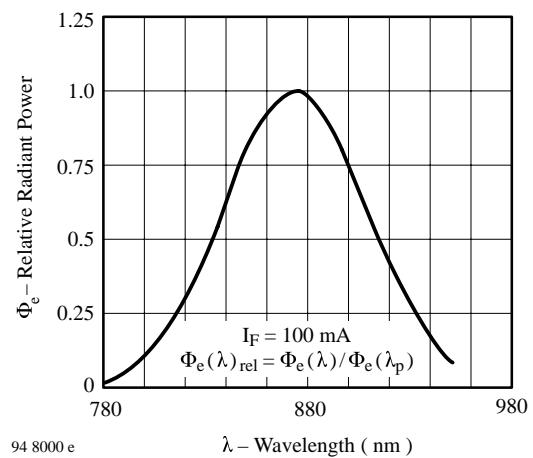


Figure 9. Relative Radiant Power vs. Wavelength

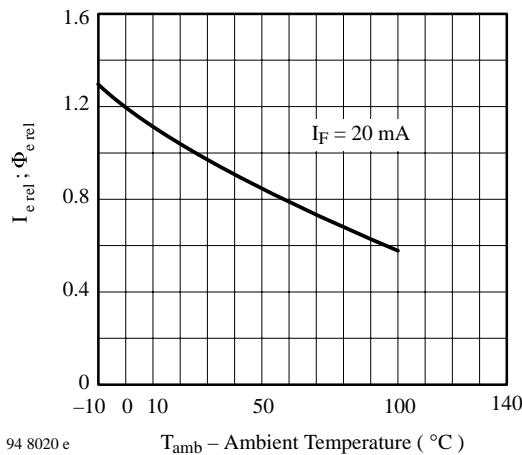


Figure 8. Rel. Radiant Intensity\Power vs. Ambient Temperature

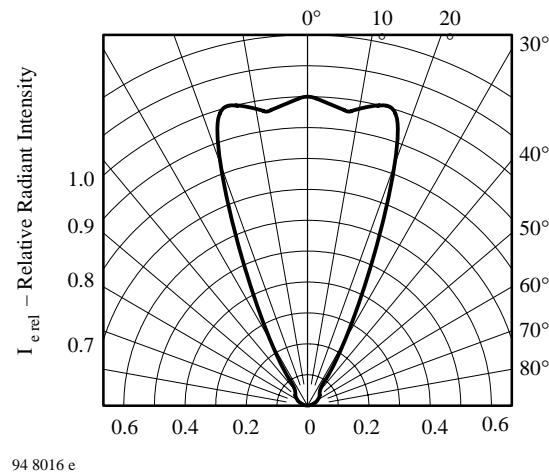
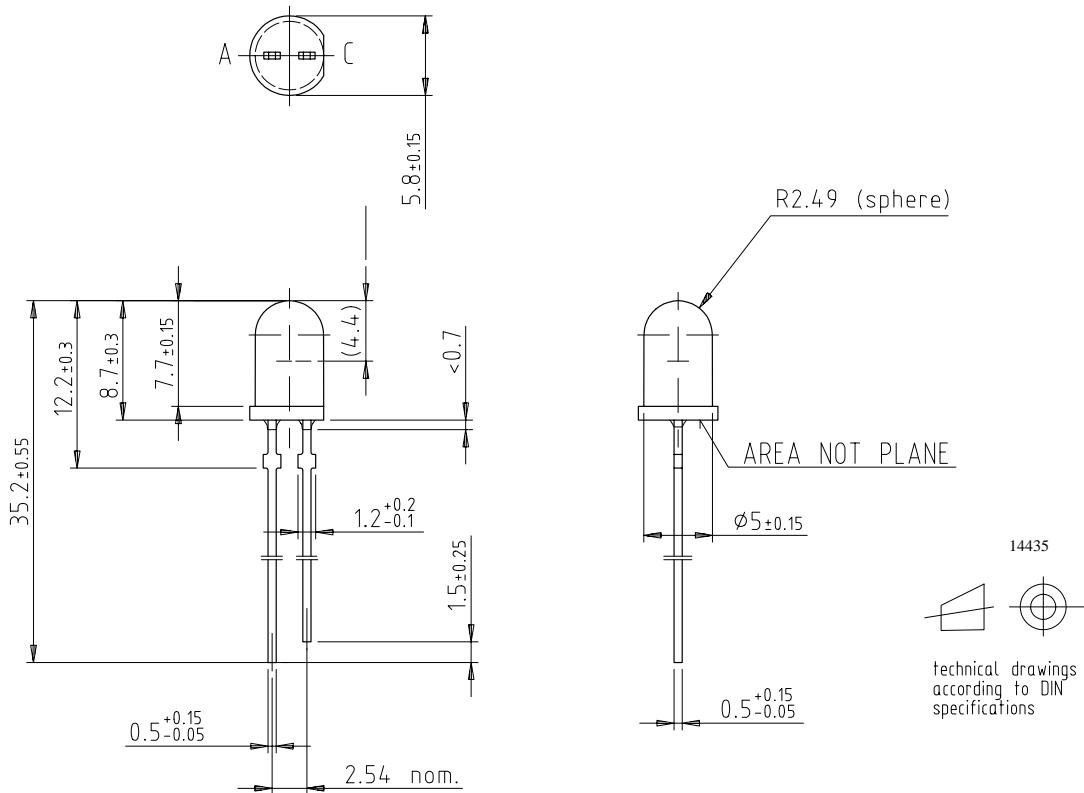



Figure 10. Relative Radiant Intensity vs. Angular Displacement

Dimensions in mm

Ozone Depleting Substances Policy Statement

It is the policy of **Vishay Semiconductor GmbH** to

1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423