

On-Board Type (DC) EMI Suppression Filters (EMIFIL®)

EMI SUPPRESSION FILTERS

Murata EMC Solutions : <http://www.murata.com/emc/>

muRata *Innovator
in Electronics*

Murata
Manufacturing Co., Ltd.

Cat.No.C31E-8

CONTENTS

EMIFIL® , EMIGUARD® , "EMIFIL" and "EMIGUARD" in this catalog are the trademarks of Murata Manufacturing Co., Ltd.

Part Numbering	2
Selection Guide of EMI Filters	13
Products Guide /Effective Frequency Range	14
Outlines of EMI Suppression Filter (EMIFIL®) for DC Line	17

Chip EMI Suppression Filters (EMIFIL®)

1	Chip Ferrite Beads	BLM Series	23
		BLM_A Series	28
		BLM_B Series	36
		BLM_R Series	49
		BLM_P Series	53
2	GHz Noise Suppression Chip Ferrite Beads	BLM18H Series	61
3	Chip Ferrite Beads Arrays	BLA2AA/BLA2AB/BLA31A/BLA31B Series	66
4	Chip EMIFIL® Capacitor Type	NFM18C/NFM21C/NFM3DC/NFM41C Series	71
5	Chip EMIFIL® Capacitor Array Type	NFA31C Series	75
6	Chip EMIFIL® RC Combined Type	NFR21G Series	76
7	Chip EMIFIL® RC Combined Array Type	NFA31G Series	80
8	Chip EMIFIL® LC Combined Monolithic Type	NFL18ST/NFL21S Series	82
9	Chip EMIFIL® LC Combined Winding Type	NFW31S Series	84
10	Chip EMIFIL® LC Combined Type for Large Current	NFE31P/NFE61P/NFE61H Series	86
11	Chip EMIFIL® for Large Current	NFM_P Series	89
12	Chip EMIGUARD® (EMIFIL® with Varistor Function)	VFM41R Series	93
13	Chip Common Mode Choke Coils Film Type	DLP31S Series	95
14	Chip Common Mode Choke Coils Arrays Film Type	DLP31D Series	96
15	Chip Common Mode Choke Coils Monolithic Type	DLM2HG Series	97
16	Chip Common Mode Choke Coils Winding Type	DLW21S/DLW31S Series	98
17	Chip Common Mode Choke Coils Winding Type for Large Current	DLW5AH/DLW5BS Series	100

Lead Type EMI Suppression Filters (EMIFIL®)

18	Ferrite Beads Inductors	BL01/BL02/BL03 Series	101
19	Disc Type EMIFIL®	DSN6/DSS6 Series	104

20	Disc Type EMIFIL®	Broad Type DSN9/DSS9/DST9 Series	107	1
21	Disc Type EMIFIL® Heavy-duty Type DSN9H/DSS9H/DST9H Series		109	2
22	Chip EMIGUARD® (EMIFIL® with Varistor Function) VFR3V/VFS6V/VFS9V Series		111	3
23	Block Type EMIFIL®	BNX Series	118	4
24	Common Mode Choke Coils (for DC Line) PLT09H Series		120	5
Microwave Absorbers				6
25	Microwave Absorbers	EA10/EA20/EA21 Series	121	7
⚠Caution/Notice				8
	Chip EMIFIL®		123	9
	Lead Type EMIFIL®		124	10
Soldering and Mounting				11
	Chip EMIFIL®		125	12
	Lead Type EMIFIL®		132	13
Packaging				14
	Chip EMIFIL®		134	15
	Ferrite Beads Inductors		136	16
	Disc Type EMIFIL® and EMIGUARD®		137	17
Chip EMI Suppression Filter Design Kits				18
Outlines of Major Noise Regulation Standards				19
Noise Suppression Principles by DC EMIFIL®				20
Murata EMI Filter Selection Simulator				21
				22
				23
				24
				25

● **Part Numbering** (The structure of the "Global Part Numbers" that have been adopted since June 2001 and the meaning of each code are described herein.)
(If you have any questions about details, inquire at your usual Murata sales office or distributor.)

Chip EMIFIL® Inductor Type

(Global Part Number) **BL** **M** **18** **AG** **102** **S** **N** **1** **D**
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨

① Product ID

Product ID	
BL	Chip Ferrite Beads

② Type

Code	Type
A	Array Type
M	Monolithic Type

③ Dimension (L×W)

Code	Dimension (L×W)	EIA
15	1.0×0.5mm	0402
18	1.6×0.8mm	0603
2A	2.0×1.0mm	0804
21	2.0×1.25mm	0805
31	3.2×1.6mm	1206
41	4.5×1.6mm	1806

⑤ Impedance

Expressed by three figures. The unit is in ohm (Ω). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures.

⑥ Performance

Expressed by a letter.

Ex.)	Code	Performance
	S	Sn Plating

⑦ Category

Code	Category
N	Standard Type
H	for Heavy-duty

⑧ Numbers of Circuit

Code	Numbers of Circuit
1	1 Circuit
4	4 Circuit

④ Characteristics/Applications

Code *1	Characteristics/Applications	Series
AF	for General Use	BLM31/BLM41
AG		BLM15/BLM18/BLM21/BLM31/BLA2A/BLA31
AJ		BLM21/BLM31
AH		BLM21
BA	for High-speed Signal Lines	BLM18
BB		BLM15/BLM18/BLM21/BLA2A
BD		BLM15/BLM18/BLM21/BLA31
BE		BLM31
PF	for Power Supplies	BLM41
PG		BLM18/BLM21/BLM31/BLM41
RK	for Digital Interface	BLM18/BLM21
HG	for GHz Band General Use	BLM18
HB	for GHz Band High-speed Signal Line	BLM18
HD		
HK	for GHz Band Digital Interface	BLM18

*1 Frequency characteristics is varied with each code.

⑨ Packaging

Code	Packaging	Series
K	Plastic Taping (ø330mm Reel)	BLM31/BLM41/BLM21 *1
L	Plastic Taping (ø180mm Reel)	
B	Bulk	All series
J	Paper Taping (ø330mm Reel)	BLM15/BLM18/BLM21*2 /BLA31
D	Paper Taping (ø180mm Reel)	
C	Bulk Case	BLM15/BLM18

*1 BLM21BD222SN1/BLM21BD272SN1 only.

*2 Except BLM21BD222SN1/BLM21BD272SN1

Chip EMIFIL® Capacitor Type

(Global Part Number) **NF M 3D CC 102 R 1H 3 L**
 1 2 3 4 5 6 7 8 9

① Product ID

Product ID	
NF	Chip EMI Filters Capacitor Type

② Structure

Code	Structure
M	Capacitor Type

③ Dimension (L×W)

Code	Dimension (L×W)	EIA
18	1.6×0.8mm	0603
21	2.0×1.25mm	0805
3D	3.2×1.25mm	1206
41	4.5×1.6mm	1806

④ Features

Code	Features
CC	Capacitor Type for Signal Lines
PC	Capacitor Type for Large Current

⑤ Capacitance

Expressed by three figures. The unit is in pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures.

⑥ Characteristics

Code	Capacitance Change
B	±10%
F	+30/-80%
R	±15%
U	-750 ±120ppm/°C
S	+350 to -1000ppm/°C

⑦ Rated Voltage

Code	Rated Voltage
0J	6.3V
1A	10V
1C	16V
1E	25V
1H	50V
2A	100V

⑧ Electrode/Others

Expressed by a figure.

Ex.)	Code	Electrode
	2	Sn Plating
	3	Sn Plating
	4	Solder Coating
	9	Others

⑨ Packaging

Code	Packaging	Series
L	Plastic Taping (ø180mm Reel)	NFM3D/NFM41
B	Bulk	All series
D	Paper Taping (ø180mm Reel)	NFM18/NFM21

Chip EMIFIL® Capacitor Array Type

(Global Part Number) **NF A 31 CC 101 S 1E 4 B**
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨

① Product ID

Product ID	
NF	Chip EMI Filters Capacitor Type

② Structure

Code	Structure
A	Array Type

③ Dimension (L×W)

Code	Dimension (L×W)
31	3.2×1.6mm

④ Features

Code	Features
CC	Capacitor Type for Signal Lines

⑤ Capacitance

Expressed by three figures. The unit is in pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures.

⑥ Characteristics

Code	Capacitance Change
R	±15%
S	+350 to -1000ppm/°C

⑦ Rated Voltage

Code	Rated Voltage
1C	16V
1E	25V

⑧ Numbers of Circuit

Code	Number of Circuit
4	4 circuit

⑨ Packaging

Code	Packaging
B	Bulk
D	Paper Taping (ø180mm Reel)

Chip EMIFIL® LC Combined Type

(Global Part Number) **NF** **W** **31** **SP** **206** **X** **1E** **4** **L**
 1 2 3 4 5 6 7 8 9

① Product ID

Product ID	
NF	Chip EMI Filters LC Combined Type

② Structure

Code	Structure
L	Monolithic, LC Combined Type
W	Winding, LC Combined Type
E	Block, LC Combined Type

③ Dimension (L×W)

Code	Dimension (L×W)	EIA
18	1.6×0.8mm	0603
21	2.0×1.25mm	0805
31	3.2×1.6mm	1206
61	6.8×1.6mm	2606

④ Features

Code	Features
SP	π Circuit for Signal Lines
ST	T Circuit for Signal Lines
PT	T Circuit for Large Current
HT	T Circuit for Heavy-duty

⑤ Cut-off Frequency (NFL/NFW Series)

Expressed by three figures. The unit is in hertz (Hz). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures.

⑥ Characteristics (NFL/NFW Series)

⑥ Characteristics (NFL/NFW Series)

Code	Characteristics
X	Cut off Frequency

⑥ Characteristics (NFE Series)

Code	Capacitance Change
B	±10%
C	±20%, ±22%
D	+20/-30%, +22/-33%
E	+20/-55%, +22/-56%
F	+30/-80%, +22/-82%
R	±15%
U	-750 ±120ppm/ °C
Z	Other

⑦ Rated Voltage

Code	Rated Voltage
1A	10V
1C	16V
1E	25V
1H	50V
2A	100V

⑧ Electrode

Expressed by a figure.

Ex.)	Code	Electrode
	3	Sn Plating
	4	Solder Coating
	9	Others

⑨ Packaging

Code	Packaging	Series
K	Plastic Taping (ø330mm Reel)	NFW31/NFE
L	Plastic Taping (ø180mm Reel)	NFW31/NFE
B	Bulk	NFL18/NFL21/NFE
D	Paper Taping (ø180mm Reel)	NFL18/NFL21

Chip EMIFIL® RC Combined Type

(Global Part Number) **NF R 21 GD 470 470 2 L**
① ② ③ ④ ⑤ ⑥ ⑦ ⑧

① Product ID

Product ID	
NF	EMIFIL®

② Structure

Code	Structure
R	RC Combined Type

③ Dimension (L×W)

Code	Dimension (L×W)	EIA
21	2.0×1.25mm	0805

④ Features

Code	Features
GD	RC Combined Type for Signal Lines

⑤ Capacitance

Expressed by three figures. The unit is in pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures.

Chip EMIFIL® RC Combined Array Type

(Global Part Number) **NF A 31 GD 100 101 4 D**
① ② ③ ④ ⑤ ⑥ ⑦ ⑧

① Product ID

Product ID	
NF	EMIFIL®

② Structure

Code	Structure
A	Array Type

③ Dimension (L×W)

Code	Dimension (L×W)
31	3.2×1.6mm

④ Features

Code	Features
GD	RC Combined Type for Signal Lines

⑤ Capacitance

Expressed by three figures. The unit is in pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures. If there is a decimal point, it is expressed by capital letter "R". In this case, all figures are significant digits.

⑥ Resistance

Expressed by three figures. The unit is in ohm (Ω). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures.

⑦ Electrode/Others

Code	Electrode
2	Sn Plating

⑧ Packaging

Code	Packaging
L	Plastic Taping (ø180mm Reel)
B	Bulk

⑥ Resistance

Expressed by three figures. The unit is in ohm (Ω). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures. If there is a decimal point, it is expressed by capital letter "R". In this case, all figures are significant digits.

⑦ Numbers of Circuit

Code	Numbers of Circuit
4	4 Circuit

⑧ Packaging

Code	Packaging
B	Bulk
D	Paper Taping (ø180mm Reel)

Chip EMIFIL® Common Mode Choke Coils

(Global Part Number) **DL W 21 S N 371 S Q 2 L**
 1 2 3 4 5 6 7 8 9 10

① Product ID

Product ID	
DL	Chip Common Mode Choke Coils

② Structure

Code	Structure
W	Winding Type
M	Monolithic Type
P	Film Type

③ Dimension (L×W)

Code	Dimension (L×W)	EIA
21	2.0×1.2mm	0805
31	3.2×1.6mm	1206
2H	2.5×2.0mm	–
5A	5.0×3.6mm	–
5B	5.0×5.0mm	–

④ Type

Code	Type
S	Magnetically Shielded One Circuit Type
D	Magnetically Shielded Two Circuit Type
H	Open Magnetic One Circuit Type
G	Magnetically Monolithic Type (sectional winding)

⑩ Packaging

Code	Packaging	Series
K	Plastic Taping (ø330mm Reel)	DLW5AH/DLW5BS
L	Plastic Taping (ø180mm Reel)	All series
B	Bulk	All series

⑤ Category

Code	Category
N	Standard Type

⑥ Impedance

Typical impedance at 100MHz is expressed by three figures. The unit is in ohm (Ω). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures.

⑦ Circuit

Ex.)	Code	Circuit
	S	Standard Type

⑧ Features

Code	Features
L	
Q	Expressed by a letter.
Z	

⑨ Numbers of Signal Line

Code	Number of Signal Line
2	Two Lines
3	Three Lines
4	Four Lines

Lead Type EMIFIL® Inductor Type

(Global Part Number) **BL 02 RN 2 R1 M 2 B**

① Product ID

Product ID	
BL	Ferrite Beads Inductors

② Series

Code	Series
01	Beads ø3.6
02	Beads ø3.4
03	Beads ø2.3 max.

③ Beads Core Material

Code	Beads Core Material
RN	Standard Type

④ Numbers of Beads Core

Code	Numbers of Beads Core
1	1
2	2

⑤ Lead Type

Code	Lead Type
A1	Axial Straight Type
A2	Axial Crimp Type
R1	Radial Straight Type
R2	Radial Straight and wave formed Leads Type
R3	Radial Crimp Type

⑥ Lead Length, Space

⑥ Lead Length, Space

Code	Lead Length, Space	Series
A	Bulk, Axial Type, 3.7mm	BL01
D	Bulk, Axial Type, 45.0mm	
E	Taping Axial Type, 26.0mm	
F	Taping, Axial Type, 52.0mm	
J	Bulk, Radial Type, 5.0mm	BL02/BL03
M	Bulk, Radial Type, 10.0mm	
N	Taping, Radial Type, 16.5mm	
P	Taping, Radial Type, 18.5mm	
Q	Taping, Radial Type, 20.0mm	

⑦ Lead Diameter

Code	Lead Diameter
1	ø0.60mm
2	ø0.65mm

⑧ Packaging

Code	Packaging	Series
A	Ammo Pack	BL01/BL02/BL03
B	Bulk	All series
J	Paper Reel (ø320mm)	BL01

Lead Type EMIFIL® Capacitor Type

(Global Part Number) **DS S 9 H B3 2E 271 Q55 B**
 1 2 3 4 5 6 7 8 9

① Product ID

Product ID	
DS	Three-terminals Capacitor

② Structure

Code	Structure
N	No Ferrite Beads Type
S	Built-in Ferrite Beads Type
T	with Ferrite Beads Type

③ Style

Code	Style
6	Diameter 8.0mm Type
9	Diameter 9.5mm Type

④ Category

Code	Category
N	for General Use
H	for Heavy-duty

⑧ Lead Type/⑨ Packaging

Code	Lead Type	Lead Length* (in mm)	Packaging	Series
Q55B	Straight	25.0 min.	Bulk	All series
Q50B		4.0±0.5		DST9N/H
Q52B		6.0±1.0		DST9N
Q54B		4.0±0.5		DSN6/9, DSS6/9
Q56B		6.0±1.0		
T41B		4.0±0.5		DSS6N
T51B	Incrimp	25.0 min.	Paper Reel (ø320mm)	
Q91J		20.0±1.0		DSS9N/H, DST9N
Q92J		16.5±1.0		DSS9N/H
Q93J		18.5±1.0		
Q91A		20.0±1.0	Ammo Pack	DS□6, DSN9N/H
Q92A		16.5±1.0		
Q93A		18.5±1.0		All series except DSS9N/H
U21A		16.5±1.0		
U31A		18.5±1.0		DSS6N

*Lead Distance between Reference and Bottom Planes except Bulk.

⑤ Temperature Characteristics

Code	Capacitance Change
B3	±10% (Temperature Range : -25°C to +85°C)
C5	±22% (Temperature Range : -25°C to +85°C)
D3	+20/-30% (Temperature Range : -25°C to +85°C)
E3	+20/-55% (Temperature Range : -25°C to +85°C)
E5	+22/-56% (Temperature Range : -25°C to +85°C)
F3	+30/-80% (Temperature Range : -25°C to +85°C)
Z8	+30/-85% (Temperature Range : -10°C to +60°C)

⑥ Rated Voltage

Code	Rated Voltage
1C	16V
1H	50V
2A	100V
2E	250V

⑦ Capacitance

Expressed by three figures. The unit is in pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures.

Lead Type Common Mode Choke Coils / AC Line Filters

(Global Part Number) **PL A 10 A S 152 2R0 R 2 B**
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩

① Product ID

Product ID	
PL	Common Mode Choke Coils

② Type

Code	Type
T	DC Type
A	AC Standard Type
H	AC High-frequency Type
Y	AC Hybrid Choke Coils Type

③ Applications

Code	Applications
09	for DC Line High-frequency Type
10	for AC Line

④ Structure

Code	Structure
A	Core Vertical Type
H	Core Horizontal Type

⑤ Features

Code	Features
S	Safety Recognized
N	General Use

⑩ Packaging

Code	Packaging	Series
B	Bulk	All series
M	Magazine Package	PLT All series

⑥ Inductance

Expressed by three figures. The unit is micro-henry (μ H). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures. If there is a decimal point, it is expressed by capital letter "R". In this case, all figures are significant digits. If inductance is less than 0.1 μ H, the inductance code is expressed by combination of two figures and capital letter "N", and the unit of inductance is nano-henry (nH). Capital letter "N" indicates the unit of "nH", and also expresses a decimal point. In this case, all figures are significant digits.

⑦ Rated Current

Expressed by three figures. The unit is in ampere (A). A decimal point is expressed by capital letter "R". In this case, all figures are significant digits.

⑧ Winding Mode

Code	Winding Mode
D	Sectional Winding Type
R	Standard Type
P	Aligned Winding Type

⑨ Lead Dimensions

Code	Lead Dimensions
1	5mm
2	3.5mm
3	4mm

Chip EMIGUARD® (EMIFIL® with Varistor Function)

(Global Part Number) **VF M 41 R N 222 N 1C L**
 1 2 3 4 5 6 7 8 9

① Product ID

Product ID		
VF	Chip EMIGUARD®	

② Structure

Code	Structure
M	Monolithic Type

③ Dimension (L×W)

Code	Dimension (L×W)	EIA
41	4.5×1.6mm	1806

④ Outer Electrode

Code	Outer Electrode
R	Standard Type

⑤ Category

Code	Category
N	Standard

⑥ Capacitance

Expressed by three figures. The unit is in pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures.

⑦ Capacitance Tolerance

Code	Capacitance Tolerance
N	±30%

⑧ Rated Voltage

Code	Rated Voltage
1C	16V

⑨ Packaging

Code	Packaging
L	Plastic Taping (ø180mm Reel)
B	Bulk

Lead Type EMIGUARD® (EMIFIL® with Varistor Function)

(Global Part Number) **VF S 6 V D8 1E 221 T51 B**
 1 2 3 4 5 6 7 8 9

① Product ID

Product ID		
VF	EMIGUARD® Lead Type	

② Structure

Code	Structure
S	Built-in Ferrite Beads Type
R	with Resistance

③ Style

Code	Style
3	
6	Size is expressed by a figure
9	

⑧ Lead Type/⑨ Packaging

Code	Lead Type	Lead Length*	Packaging	Series	
T51B	Incrimp	25.0mm min.	Bulk	VFR3/VFS6	
U31A		18.5+/-1.0mm	Ammo Pack		
Q55B	Straight	25.0mm min.	Bulk	VFS9	
Q91J		20.0+/-1.0mm	Paper Reel (ø320mm)		
Q92J		16.5+/-1.0mm			
Q93J		18.5+/-1.0mm			

*Lead Distance between Reference and Bottom Planes except Bulk.

Microwave Absorber

(Global Part Number) **EA 1026 A 160 M 200 200**
① ② ③ ④ ⑤ ⑥ ⑦

① Product ID

Product ID	
EA	Microwave Absorber

② Sheet Type

Code	Sheet Type
10□□	Iron carbonyl type
2070	Metal Flake Powder (non Halogen type)
2100	Metal Flake Powder (UL certified type)

③ Adhesive Tape Type

Code	Adhesive Tape Type
A	Standard tape type
B	Thin Adhesive tape type
L	No tape type
U	UL certified type

④ Sheet Thickness

Expressed by 3 digits including the second decimal place in mm.

Ex.)	Code	Sheet Thickness
	020	0.20mm

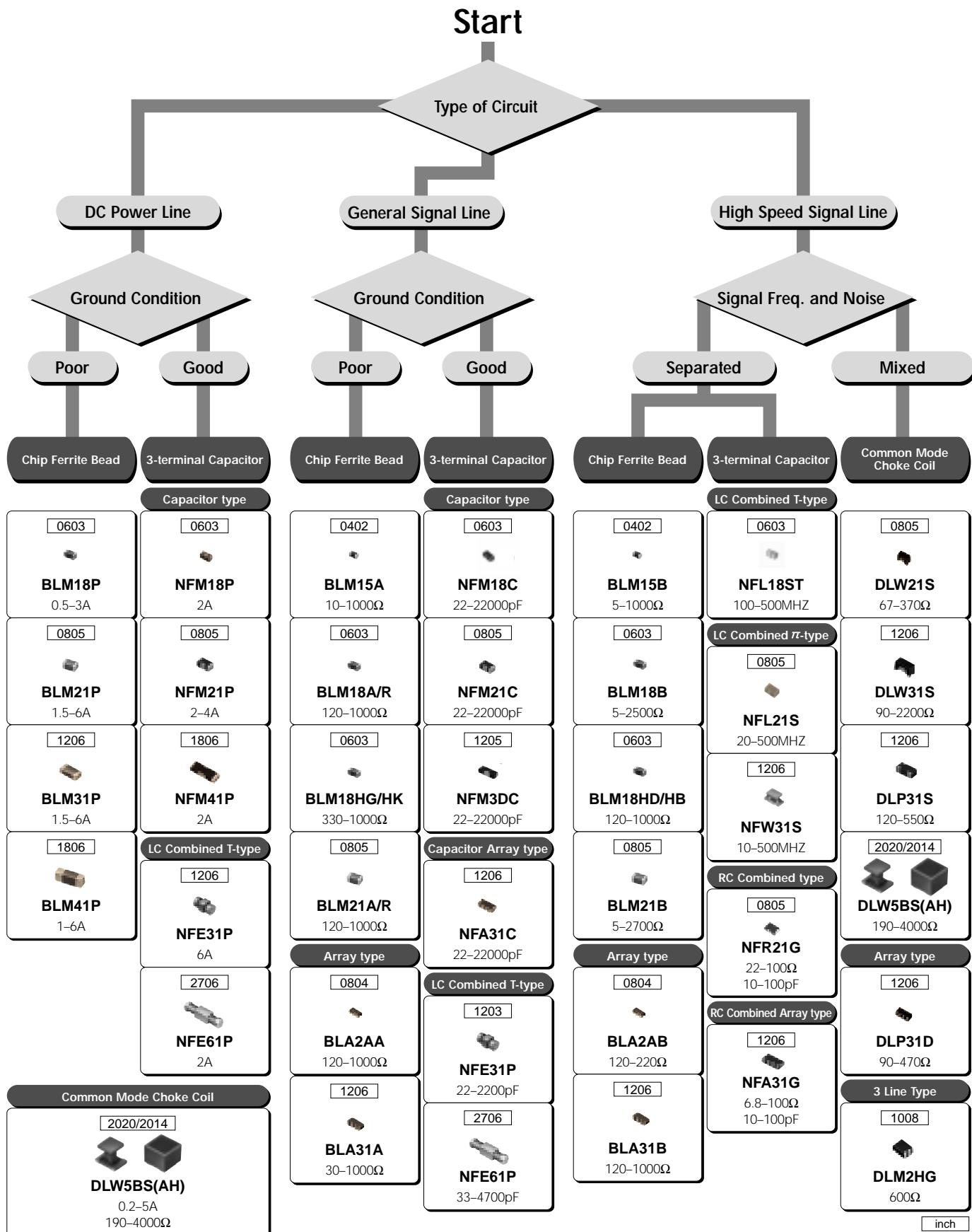
⑤ Unit of Dimension

One capital letter expresses Unit of dimension (⑥) and Dimensions Length (⑦).

Code	Unit of Dimension
M	in mm (Standard)
C	in cm (Standard)

Standard shape is a rectangle.
Please contact us for other shapes.

⑥ Dimension (Length)


Expressed by 3 digits including the first decimal place.

⑦ Dimension (Width)

Expressed by 3 digits including the first decimal place.

Ex.)	Code	Dimension (Length × Width)
	M300150	30.0×15.0 mm
	C150100	15.0×10.0 cm

Selection Guide of EMI Filters

Impedance is typical value at 100MHz.

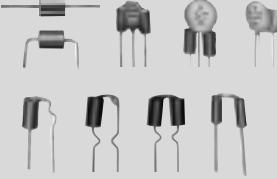
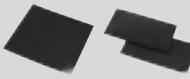
Products Guide /Effective Frequency Range

Products Guide

Type	Series	Dimensions		Effective Frequency Range						Page
		(mm)	EIA Code	10kHz	100kHz	1MHz	10MHz	100MHz	1GHz	
Inductor Type	For Digital Interface	BLM18R	1.6 0.8	0603						49-50
		BLM21R	2.0 1.25	0805						50-52
	Standard Type	BLM15A	1.0 0.5	0402						28-29
		BLM18A	1.6 0.8	0603						30-31
		BLM21A	2.0 1.25	0805						32-33
		BLM31A	3.2 1.6	1206						34
		BLM41A	4.5 1.6	1806						35
		BLA2AA	2.0 1.0	0804						66-67
		BLA31A (4 circuits array)	3.2 1.6	1206						68-69
	For High Speed Signal	BLM15B	1.0 0.5	0402						36-38
		BLM18B	1.6 0.8	0603						38-43
		BLM21B	2.0 1.25	0805						44-47
		BLM31B	3.2 1.6	1206						48
		BLA2AB	2.0 1.0	0804						66-67
		BLA31B (4 circuits array)	3.2 1.6	1206						68-70
	For Large Current	BLM18P	1.6 0.8	0603						53-54
		BLM21P	2.0 1.25	0805						55-56
		BLM31P	3.2 1.6	1206						56-57
		BLM41P	4.5 1.6	1806						58-59
	For GHz Range Noise Suppression	BLM18HG	1.6 0.8	0603						61-65
		BLM18HB	1.6 0.8	0603						
		BLM18HD	1.6 0.8	0603						
		BLM18HK	1.6 0.8	0603						

Continued on the following page.

Products Guide /Effective Frequency Range



Continued from the preceding page.

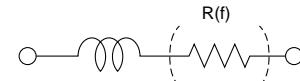
Type	Series	Dimensions		Effective Frequency Range						Page
		(mm)	EIA Code	10kHz	100kHz	1MHz	10MHz	100MHz	1GHz	
Capacitor Type	Standard Type	NFM18C	0603							71
		NFM21C	0805							72
		NFM3DC	1205							73
		NFM41C	1806							74
		NFA31C (4 circuits array)	1206							75
	For Signal Line	NFL18ST	0603							82
		NFL21S	0805							83
		NFR21G	0805							76-79
		NFA31G (4 circuits array)	1206							80-81
		NFW31S	1206							84-85
	For Large Current	NFM18P	0603							89
		NFM21P	0805							90
		NFM3DP	1205							91
		NFM41P	1806							92
	T Filter for Large Current	NFE31P	1206							86
		NFE61P(H)	2706							87-88
	With Varistor Function	VFM41R	1806							93-94
Common Mode Choke Coil	DLP31S	DLP31S	1206							95
		DLP31D	1206							96
		DLM2HG	1008							97
	DLW21S	DLW21S	0805							98
		DLW31S	1206							99
		DLW5BS (DLW5AH)	2020 (2014)							100

Continued on the following page.

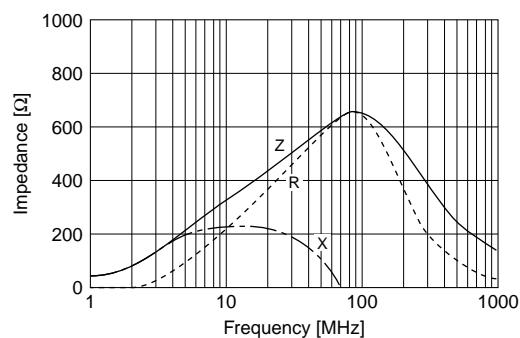
Products Guide /Effective Frequency Range

Continued from the preceding page.

Type	Series	Dimensions		Effective Frequency Range							Page
		(mm)	EIA Code	10kHz	100kHz	1MHz	10MHz	100MHz	1GHz	10GHz	
Disc Type EMIFIL®	BL01/02/03 DSN6/9(H) DSS6/9(H) DST9(H)										101-110
EMIGUARD®	VFR3V VFS6V/9V										111-117
Block Type EMIFIL®	BNX										118-119
Common Mode Choke Coil	PLT09H										120
EMC Absorber	EA10/20/21										121-122

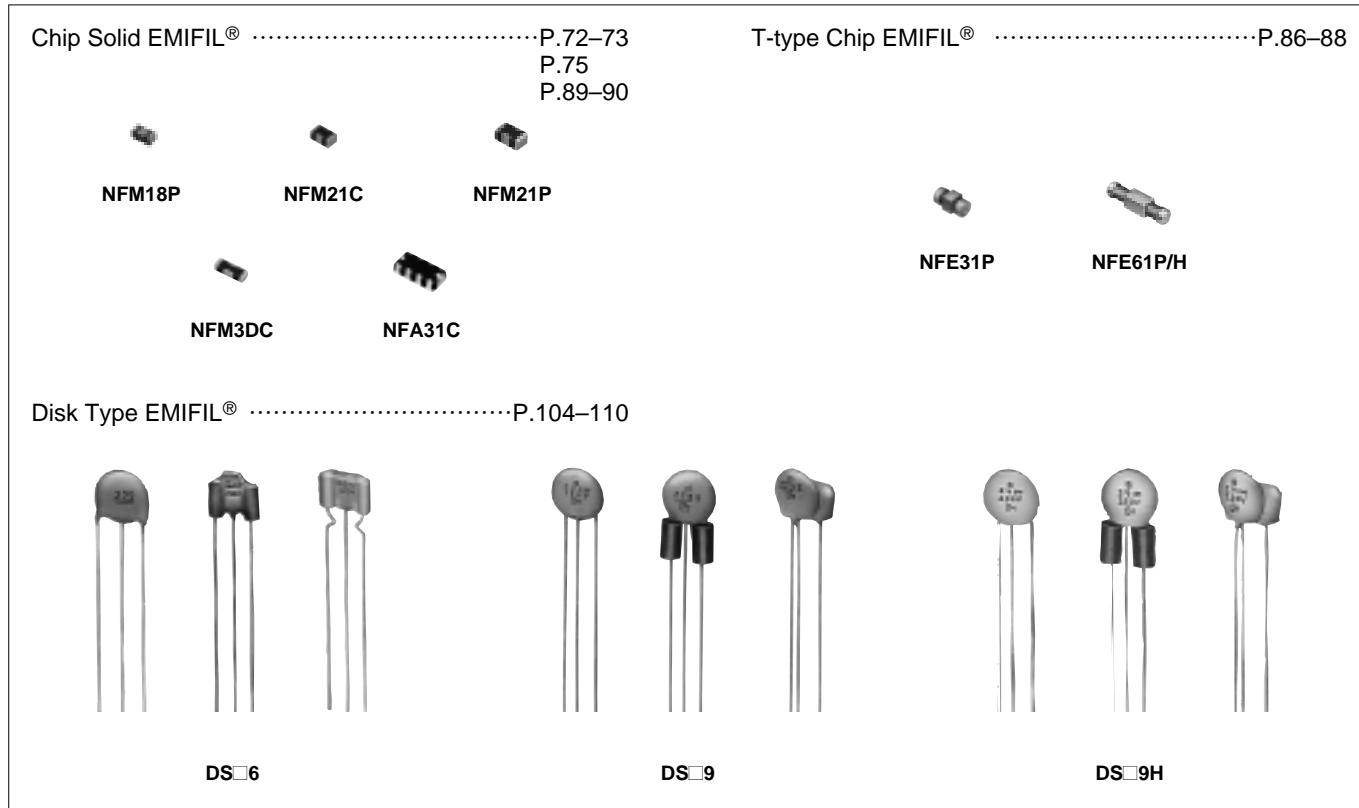

Outlines of EMI Suppression Filter (EMIFIL®) for DC Line

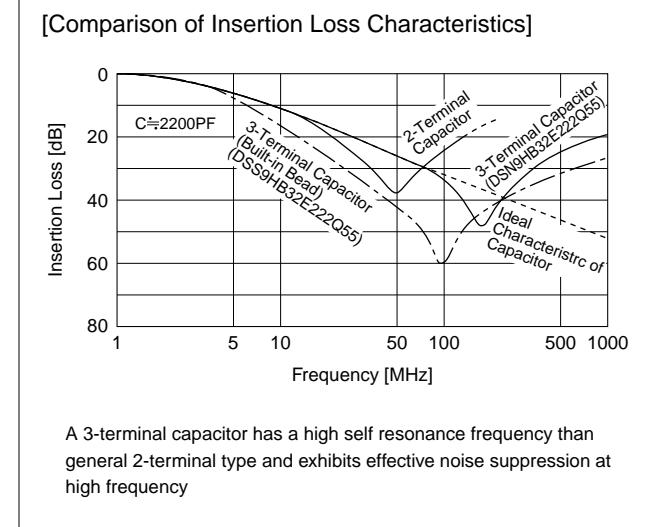
- Chip Ferrite Bead
- Ferrite Bead Inductor



- Inductor type EMI suppression filters are effective for frequencies ranging from a few MHz to a few GHz. Inductor type filters are widely used as a low noise countermeasure, as well as a universal noise suppression component.
- The inductor type EMIFIL® produce a micro inductance in the low frequency range. At high frequencies, however, the resistive component of the inductor produces the primary impedance. When inserted in series in the noise producing circuit, the resistive impedance of the inductor prevents noise propagation.

[Equivalent Circuit]

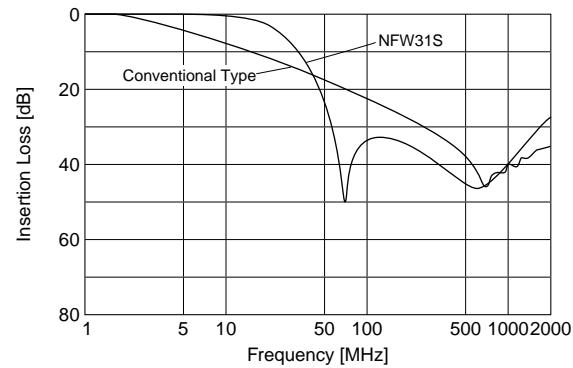

[Impedance-Frequency Characteristics(typical)]


R : Real Part (Resistive Portion) X : Imaginary Part (Inductive Portion)

Outlines of EMI Suppression Filter (EMIFIL®) for DC Line

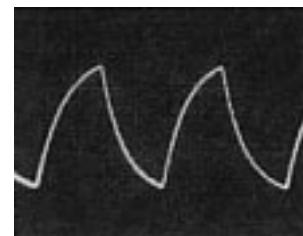
- Chip Solid EMIFIL®
- T-type Chip EMIFIL®
- Disk Type EMIFIL®

- This capacitor type EMI suppression filter has a large noise suppression effect at frequencies ranging from a few MHz to hundreds of MHz. This type of filter is used widely as a universal, high performance EMI suppression component.
- The chip solid EMIFIL® incorporates a built-in three-terminal capacitor, eliminating the lead wire and thereby increasing the high-frequency performance characteristic.
- The T-type chip EMIFIL® is a chip EMI suppression filter with a built-in feed-thru capacitor. The use of ferrite beads on input and output terminals minimizes resonance with surrounding circuits.
- Whatever the situation, 3-terminal construction reduces residual inductance, thereby substantially improving noise suppression at frequencies over 10MHz.

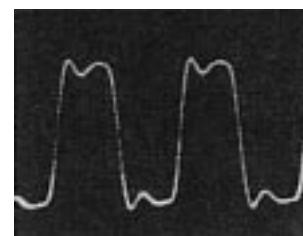

Outlines of EMI Suppression Filter (EMIFIL®) for DC Line

- Chip EMIFIL® for Signal Line
- Chip EMIFIL® with Waveform Distortion Suppressing Function

Chip EMIFIL® for Signal LineP.38-47	P.75-77	P.82-85	Chip EMIFIL® with Waveform Distortion Suppressing FunctionP.76-81			
NFW31S	NFL18ST	NFL21S	BLM18B/18HD	BLM21B	NFR21G	NFA31G

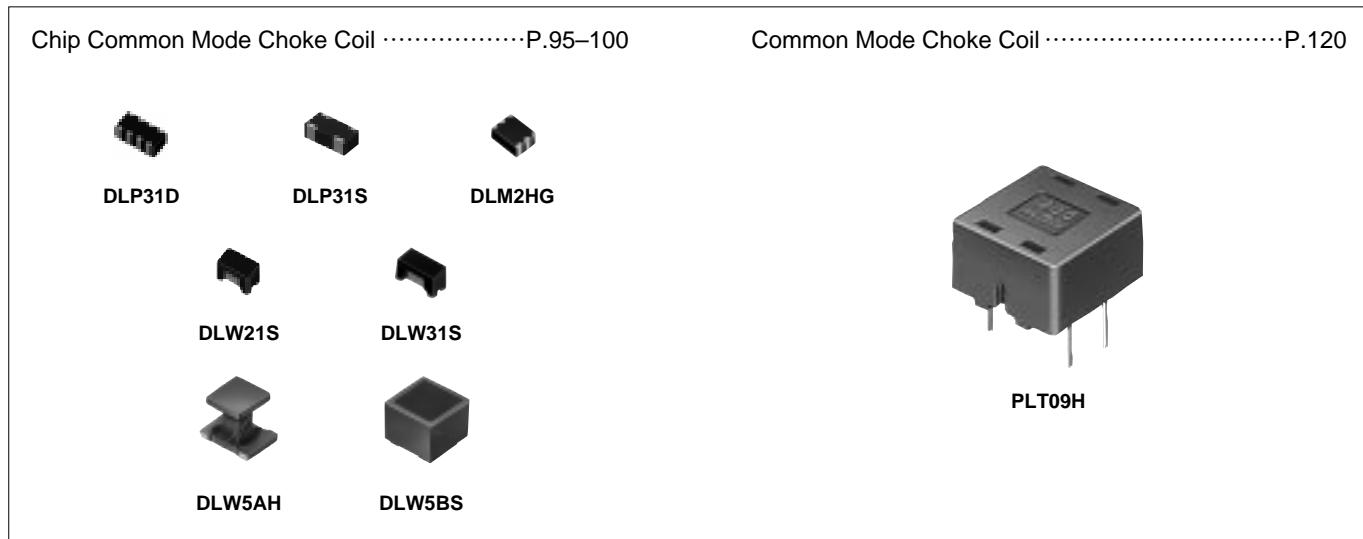

- High-speed signal application EMIFIL® are high performance EMI suppression filters which increase the slope of insertion loss frequency characteristic curves (shape factor), thereby improving noise and signal separation. These are used for high speed signal applications in which noise and signal frequency approach the same value.
To avoid the elimination of both the noise and specific signal components, 3-terminal capacitors and other components are applied.
An NFW31S with a built-in capacitor and an inductor type BLM□□B are available.
BLM18HD has additional performance for suppressing GHz range noise after cut off frequency.
- The EMIFIL® with waveform distortion suppressing function suppresses waveform distortion caused by the resonance of digital ICs and surrounding circuits.

[Comparison of Insertion Loss Characteristics]

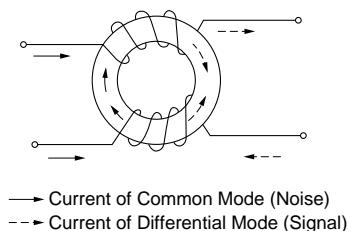


[Waveform change when filter is inserted]

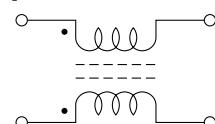
Conventional Type
(Chip 3-terminal Capacitor)



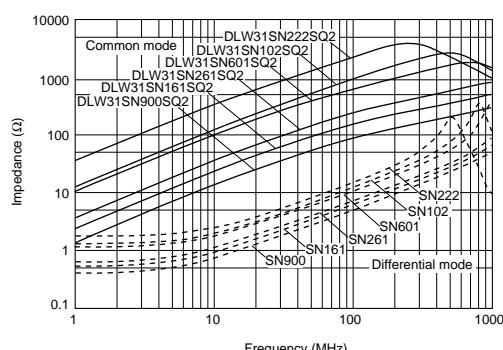
EMIFIL® for Signal Line
NFW31S series


Outlines of EMI Suppression Filter (EMIFIL®) for DC Line

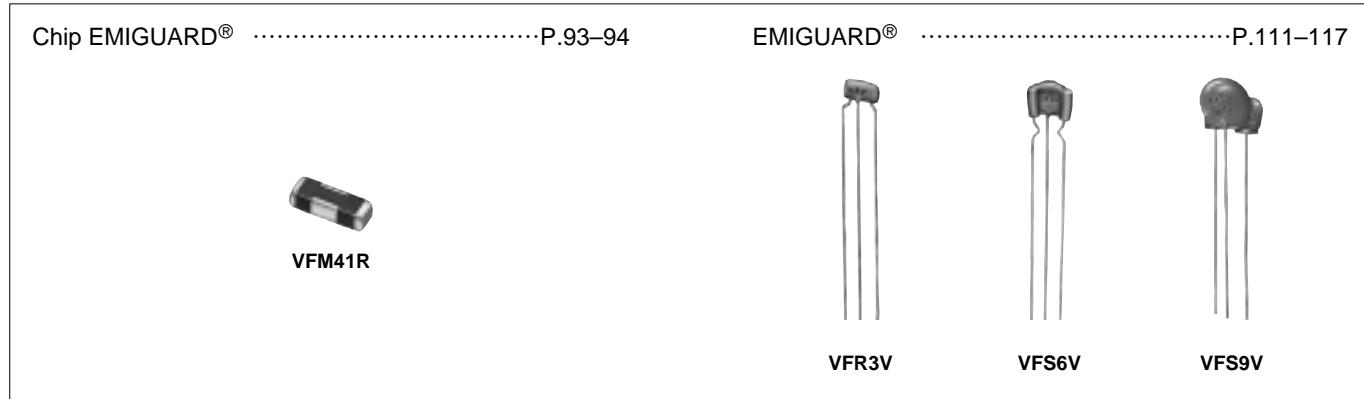
- Chip Common Mode Choke Coil
- Common Mode Choke Coil



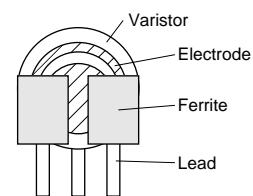
- These choke coils reduce common mode noise, which causes problems on balanced transmission lines, and are effective against common mode noise in the several MHz to several 100 MHz frequency range. They are ideally suited for use on DC power supply lines and interface cables.
- There are two types of chip common mode choke coils: the high-performance wound wire DLW5BS/(AH). They offer particular characteristics to match the specific application.


[Construction of Common Mode Choke Coil]

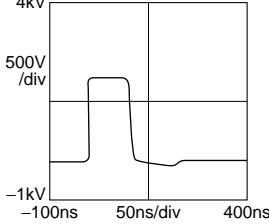
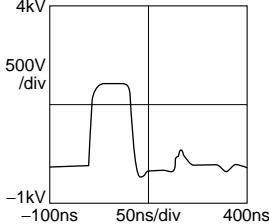
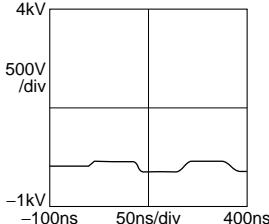
[Equivalent Circuit]



[Impedance-Frequency Characteristics(DLW31S)]


Outlines of EMI Suppression Filter (EMIFIL®) for DC Line

- Chip EMIGUARD®
- EMIGUARD®

- EMIGUARD® eliminates both surge noises and EMI noises due to its dielectric varistor material.
- Effective when high frequency noise and high voltage surge suppression are required, and also in situations when surging starts at extremely high speeds. This type of surging cannot be eliminated with general type varistors.
- VFM41R is chip type of EMIGUARD®.

[Construction of EMIGUARD® (VFS9V)]

■ Surge Absorption Effect of EMIGUARD®

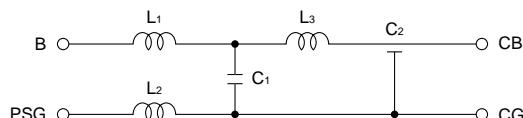
Type of Filter	Surge Absorption Effect of EMIGUARD®
No filter	
3-terminal capacitor is used to suppress the surge.	
EMIGUARD® is used to suppress the surge. (VFS6V)	

Outlines of EMI Suppression Filter (EMIFIL®) for DC line

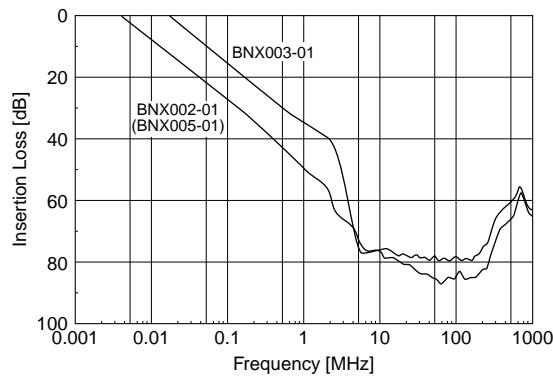
● Block Type EMIFIL®

Block Type EMIFIL® P.118-119

BNX002-01


BNX003-01

BNX005-01


- Block type EMIFIL® are resin encased, built-in, high performance EMI suppression filters, which use a feed-thru capacitor having excellent high frequency characteristics.
- Used when the noise frequency is high, or when extreme countermeasures are required.
- The high performance EMIFIL® BNX series exhibits significant noise suppression effects over a wide frequency band (extending from 100kHz to 1GHz) in DC power lines.

[Equivalent Circuit (BNX Series)]

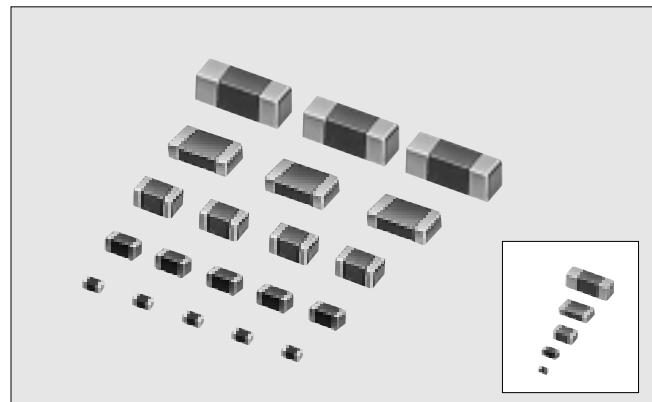
PSG: Power Supply Ground
CG: Circuit Ground
CB: Circuit + B

[Insertion Loss Characteristics]

On-Board Type (DC) EMI Suppression Filters(EMIFIL®)

muRata

1


Chip Ferrite Bead BLM Series

Essential for Noise Suppression in High Speed Signal Lines and DC Power Lines

The chip ferrite bead BLM series comprises ferrite bead in the shape of a chip. This ferrite bead generates a high impedance which at high frequencies mainly consists of a resistance element. The BLM series is effective in circuits without stable ground lines because the BLM series does not need a connection to ground.

Chip sizes of 1.0×0.5, 1.6×0.8, 2.0×1.25, 3.2×1.6 and 4.5×1.6mm are cataloged. (The BLA series of array type chip ferrite bead is also cataloged.)

The nickel barrier structure of the external electrodes provides excellent solder heat resistance.

■Features

The BLM series comprises, the R series (for digital interface), the A series (for standard), the B series (for high speed signal), the P series (for large current), and H series (for GHz Range Noise Suppression).

1. BLM□□R series-For Digital Interface

The BLM-R series can be used in Digital Interface.

Resistance of BLM-R series especially grows in the lower frequency range. Therefore BLM-R series is less effective for digital signal waveform at low frequency range and can suppress the ringing.

2. BLM□□A series-For Standard

The BLM-A series generates an impedance from the relatively low frequencies. Therefore the BLM-A series is effective in noise suppression in the wide frequency range (30MHz-Several hundred MHz).

3. BLM□□B series-For High Speed Signal

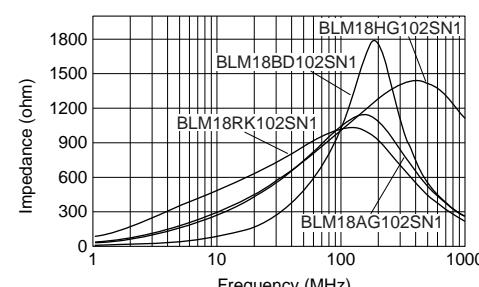
The BLM-B series can minimize attenuation of the signal waveform due to its sharp impedance characteristics.

Various impedances are available to match signal frequency

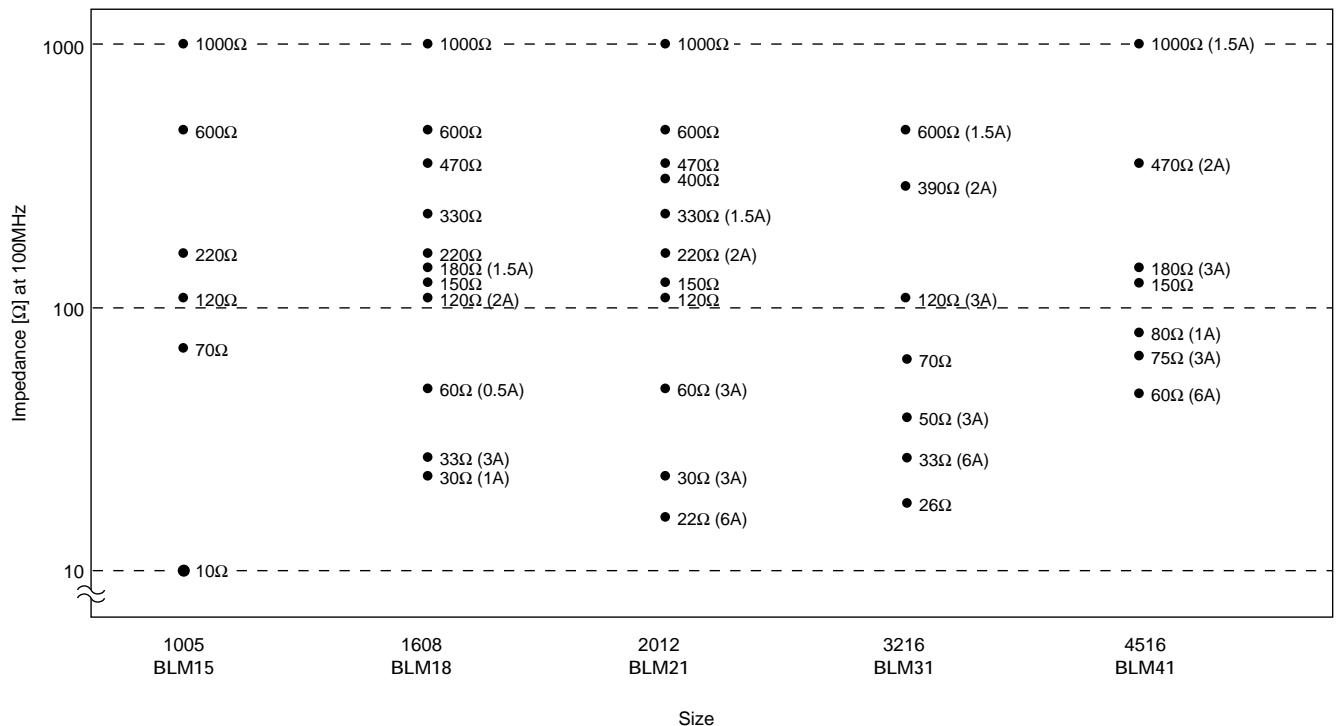
4. BLM□□P series-For Large Current

The BLM-P series can be used in high current circuits due to its low DC resistance. It can match power lines to a maximum of 6A DC (BLM41P).

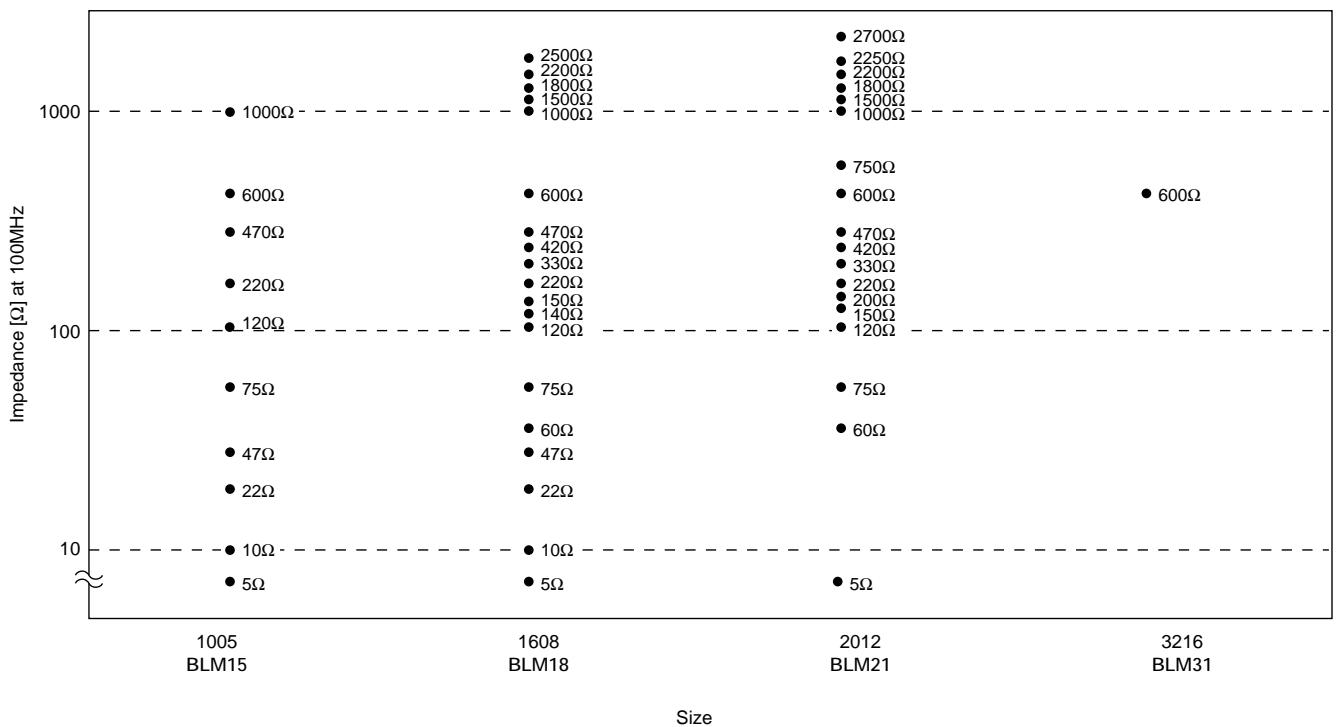
5. BLM18H series-For GHz Range Noise Suppression


The BLM18H series has a modified internal electrode structure that minimizes stray capacitance and increases the effective frequency range.

■Equivalent Circuit Diagram


(Resistance element becomes dominant at high frequencies.)

[Impedance Characteristics]



1 ■ Selection Guide

● BLM□□A series-Standard / BLM□□R series-For Digital Interface / BLM□□P series-For Large Current

● BLM□□B series-For High Speed Signal

■ BLM Series

Size (inch)	Type	Part Number	Impedance (Ω) at 100MHz	Rated Current (mA)
0402	For Standard	BLM15AG100SN1	10 (Typ.)	1000
		BLM15AG700SN1	70 (Typ.)	500
		BLM15AG121SN1	120±25%	
		BLM15AG221SN1	220±25%	
		BLM15AG601SN1	600±25%	
		BLM15AG102SN1	1000±25%	200
	For High Speed Signal (Sharp impedance characteristic)	BLM15BB050SN1	5±25%	500
		BLM15BB100SN1	10±25%	
		BLM15BB220SN1	22±25%	
		BLM15BB470SN1	47±25%	300
		BLM15BB750SN1	75±25%	
		BLM15BB121SN1	120±25%	
		BLM15BB221SN1	220±25%	
		BLM15BD471SN1	470±25%	
		BLM15BD601SN1	600±25%	200
		BLM15BD102SN1	1000±25%	
0603	For Standard	BLM18AG121SN1	120±25%	
		BLM18AG151SN1	150±25%	
		BLM18AG221SN1	220±25%	
		BLM18AG331SN1	330±25%	200
		BLM18AG471SN1	470±25%	
		BLM18AG601SN1	600±25%	
		BLM18AG102SN1	1000±25%	100
	For High Speed Signal (Sharp impedance characteristic)	BLM18BA050SN1	5±25%	500
		BLM18BB050SN1		700
		BLM18BA100SN1	10±25%	
		BLM18BB100SN1		
		BLM18BA220SN1	22±25%	500
		BLM18BB220SN1		
		BLM18BA470SN1	47±25%	300
		BLM18BB470SN1		500
		BLM18BB600SN1	60±25%	200
		BLM18BA750SN1	75±25%	300
		BLM18BB750SN1		200
		BLM18BA121SN1	120±25%	
		BLM18BB121SN1		
		BLM18BD121SN1		
		BLM18BB141SN1	140±25%	
		BLM18BB151SN1	150±25%	
		BLM18BD151SN1		
		BLM18BB221SN1	220±25%	
		BLM18BD221SN1		
		BLM18BB331SN1	330±25%	
		BLM18BD331SN1		
		BLM18BD421SN1	420±25%	
		BLM18BB471SN1	470±25%	50
		BLM18BD471SN1		200
		BLM18BD601SN1	600±25%	200
		BLM18BD102SN1	1000±25%	100
		BLM18BD152SN1	1500±25%	
		BLM18BD182SN1	1800±25%	
		BLM18BD222SN1	2200±25%	
		BLM18BD252SN1	2500±25%	50

Continued on the following page.

Continued from the preceding page.

Size (inch)	Type	Part Number	Impedance (Ω) at 100MHz	Rated Current (mA)	
0603	For Digital Interface	BLM18RK121SN1	120±25%	200	
		BLM18RK221SN1	220±25%		
		BLM18RK471SN1	470±25%		
		BLM18RK601SN1	600±25%		
		BLM18RK102SN1	1000±25%		
	For Large Current	BLM18PG300SN1	30 (Typ.)	1000	
		BLM18PG330SN1	33±25%	3000	
		BLM18PG600SN1	60 (Typ.)	500	
		BLM18PG121SN1	120±25%	2000	
		BLM18PG181SN1	180±25%	1500	
0805	For GHz Range Noise Suppression	BLM18HG471SN1	470±25%	200	
		BLM18HG601SN1	600±25%		
		BLM18HG102SN1	1000±25%	100	
		BLM18HB121SN1	120±25%	200	
		BLM18HB221SN1	220±25%	100	
		BLM18HB331SN1	330±25%	50	
		BLM18HD471SN1	470±25%	100	
		BLM18HD601SN1	600±25%		
		BLM18HD102SN1	1000±25%	50	
		BLM18HK331SN1	330±25%	200	
		BLM18HK471SN1	470±25%		
		BLM18HK601SN1	600±25%	100	
		BLM18HK102SN1	1000±25%	50	
	For Standard	BLM21AG121SN1	120±25%	200	
		BLM21AG151SN1	150±25%		
		BLM21AG221SN1	220±25%		
		BLM21AG331SN1	330±25%		
		BLM21AJ401SN1	400±25%		
		BLM21AG471SN1	470±25%		
		BLM21AG601SN1	600±25%		
		BLM21AJ601SN1			
		BLM21AG102SN1	1000±25%		
		BLM21AH102SN1			
0805	For High Speed Signal (Sharp impedance characteristic)	BLM21BB050SN1	5±25%	500	
		BLM21BB600SN1	60±25%	200	
		BLM21BB750SN1	75±25%		
		BLM21BB121SN1	120±25%		
		BLM21BD121SN1			
		BLM21BB151SN1	150±25%		
		BLM21BD151SN1			
		BLM21BB201SN1	200±25%		
		BLM21BB221SN1	220±25%		
		BLM21BD221SN1			
		BLM21BB331SN1	330±25%		
		BLM21BD331SN1			
		BLM21BD421SN1	420±25%	200	
		BLM21BB471SN1	470±25%		
		BLM21BD471SN1			
		BLM21BD601SN1	600±25%		
		BLM21BD751SN1	750±25%		
		BLM21BD102SN1	1000±25%		
		BLM21BD152SN1	1500±25%		
		BLM21BD182SN1	1800±25%		
		BLM21BD222SN1	2250 (Typ.)		
		BLM21BD222TN1	2200±25%		
		BLM21BD272SN1	2700±25%		

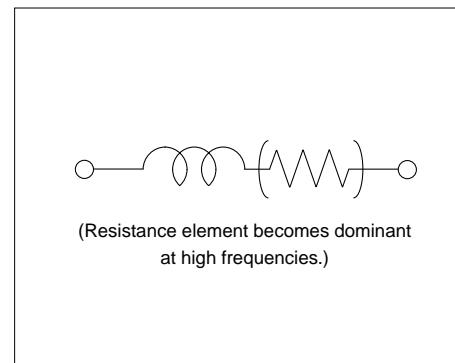
Continued on the following page.

Continued from the preceding page.

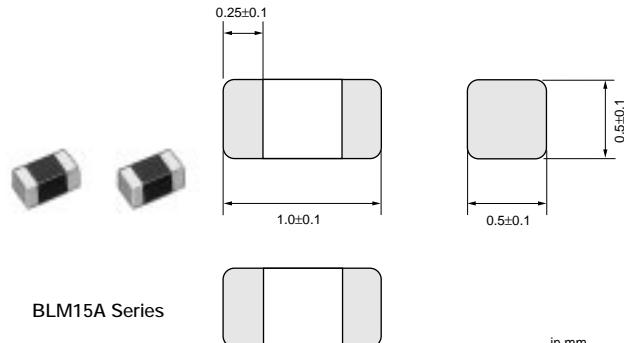
Size (inch)	Type	Part Number	Impedance (Ω) at 100MHz	Rated Current (mA)
0805	For Digital Interface	BLM21RK121SN1	120±25%	200
		BLM21RK221SN1	220±25%	
		BLM21RK471SN1	470±25%	
		BLM21RK601SN1	600±25%	
		BLM21RK102SN1	1000±25%	
	For Large Current	BLM21PG220SN1	22 (Typ.)	6000
		BLM21PG300SN1	30 (Typ.)	3000
		BLM21PG600SN1	60 (Typ.)	
		BLM21PG221SN1	220 (Typ.)	2000
		BLM21PG331SN1	330 (Typ.)	1500
1206	For Standard	BLM31AJ260SN1	26±25%	500
		BLM31AF700SN1	70±25%	200
		BLM31AJ601SN1	600±25%	
	For High Speed Signal (Sharp impedance characteristic)	BLM31BE601FN1	600±25%	300
		BLM31PG330SN1	33 (Typ.)	6000
		BLM31PG500SN1	50 (Typ.)	3000
		BLM31PG121SN1	120 (Typ.)	
		BLM31PG391SN1	390 (Typ.)	2000
		BLM31PG601SN1	600 (Typ.)	1500
1806	For Standard	BLM41AF800SN1	80±25%	500
		BLM41AF151SN1	150±25%	200
	For Large Current	BLM41PG600SN1	60 (Typ.)	6000
		BLM41PG750SN1	75 (Typ.)	3000
		BLM41PF800SN1	80 (Typ.)	1000
		BLM41PG181SN1	180 (Typ.)	3000
		BLM41PG471SN1	470 (Typ.)	2000
		BLM41PG102SN1	1000 (Typ.)	1500

On-Board Type (DC) EMI Suppression Filters (EMIFIL®)

muRata

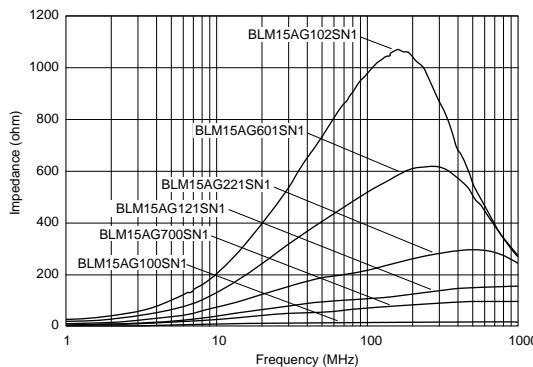

Chip Ferrite Beads BLM15/BLM18/BLM21/BLM31/BLM41 Series

■ Features (BLM_A Series)

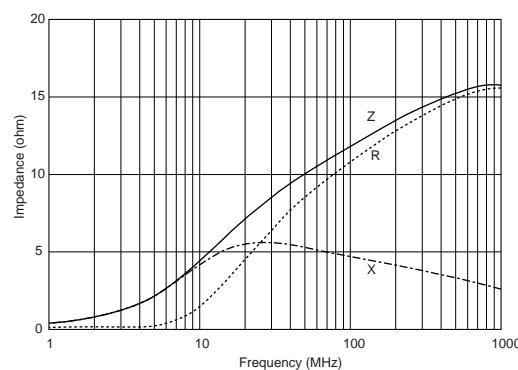

The chip ferrite bead BLM series comprises ferrite bead in the shape of a chip. This ferrite bead generates a high impedance which at high frequencies mainly consists of a resistance element. The BLM series is effective in circuits without stable ground lines because the BLM series does not need a connection to ground.

The nickel barrier structure of the external electrodes provides excellent solder heat resistance. The BLM_A series generates an impedance from the relatively low frequencies. Therefore the BLM_A series is effective in noise suppression in the wide frequency range (30MHz-Several hundred MHz).

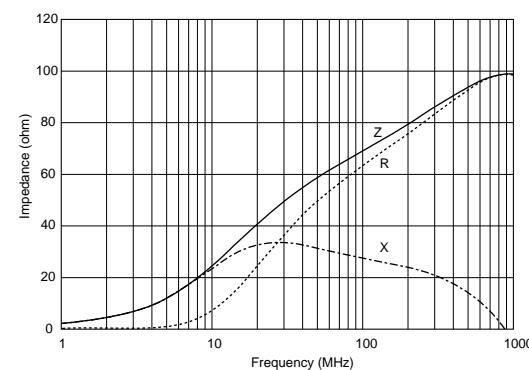
■ Equivalent Circuit


BLM15A Series (0402 Size)

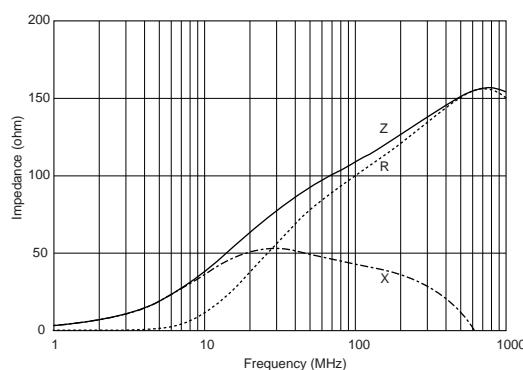
Part Number	Impedance (at 100MHz, 20 degree C) (ohm)	Rated Current (mA)	DC Resistance (max.) (ohm)	Operating Temperature Range (°C)
BLM15AG100SN1	10 (Typ.)	1000	0.05	-55 to 125
BLM15AG700SN1	70 (Typ.)	500	0.15	-55 to 125
BLM15AG121SN1	120 ±25%	500	0.25	-55 to 125
BLM15AG221SN1	220 ±25%	300	0.35	-55 to 125
BLM15AG601SN1	600 ±25%	300	0.6	-55 to 125
BLM15AG102SN1	1000 ±25%	200	1.0	-55 to 125

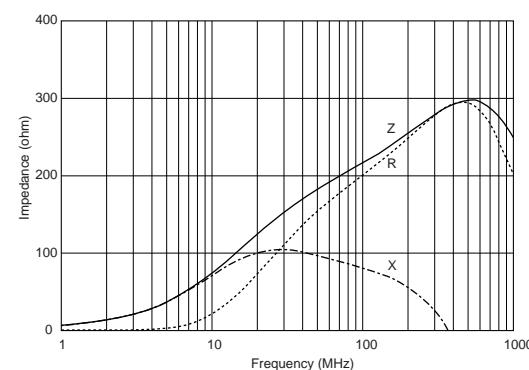

■ Impedance-Frequency (Typical)

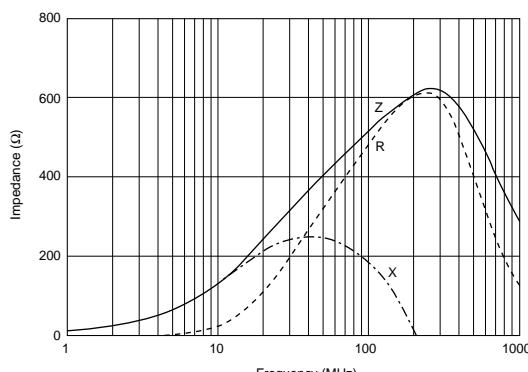
BLM15A Series

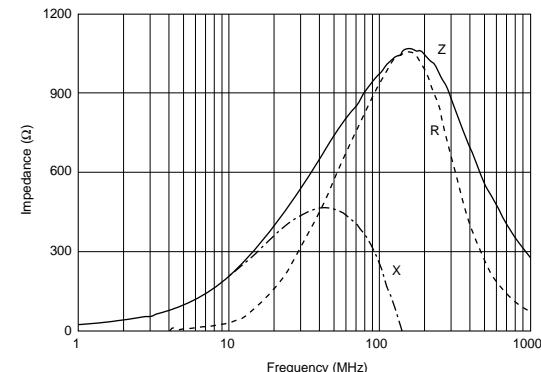


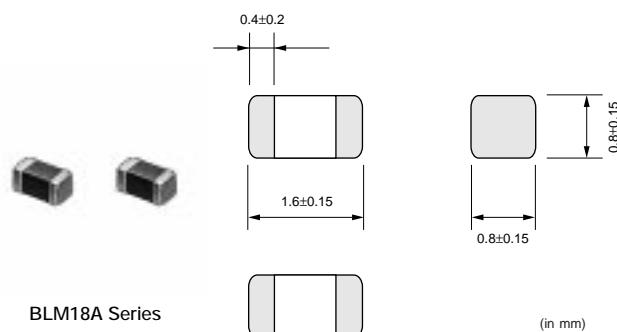
■ Impedance-Frequency Characteristics


BLM15AG100SN1

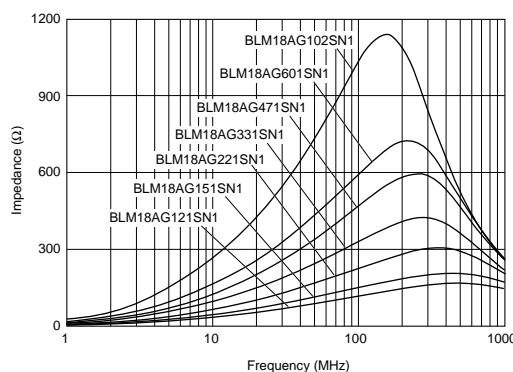

BLM15AG700SN1


BLM15AG121SN1

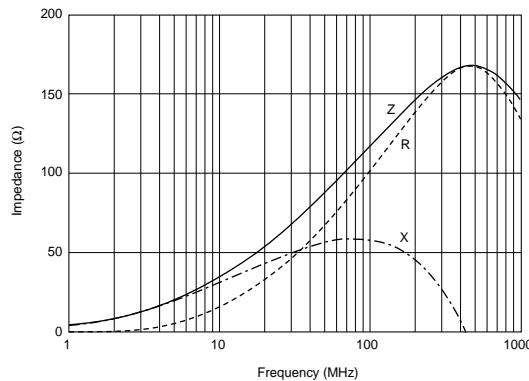

BLM15AG221SN1


BLM15AG601SN1

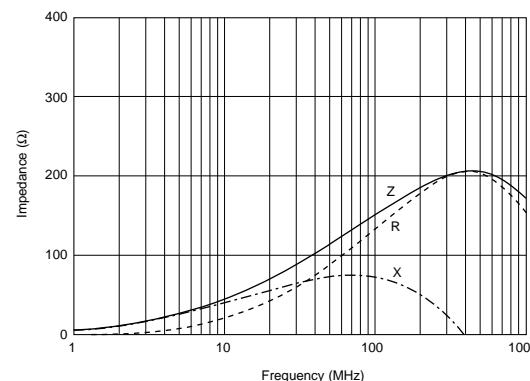
BLM15AG102SN1


BLM18A Series (0603 Size)

Part Number	Impedance (at 100MHz, 20 degree C) (ohm)	Rated Current (mA)	DC Resistance (max.) (ohm)	Operating Temperature Range (°C)
BLM18AG121SN1	$120\pm25\%$	200	0.20	-55 to 125
BLM18AG151SN1	$150\pm25\%$	200	0.25	-55 to 125
BLM18AG221SN1	$220\pm25\%$	200	0.30	-55 to 125
BLM18AG331SN1	$330\pm25\%$	200	0.45	-55 to 125
BLM18AG471SN1	$470\pm25\%$	200	0.50	-55 to 125
BLM18AG601SN1	$600\pm25\%$	200	0.50	-55 to 125
BLM18AG102SN1	$1000\pm25\%$	100	0.70	-55 to 125

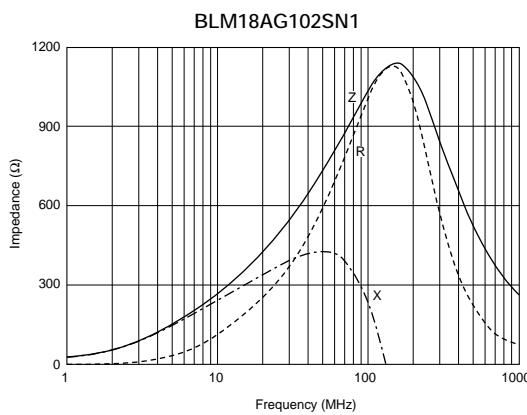
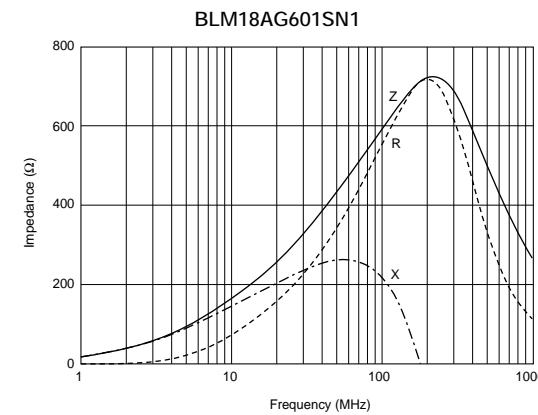
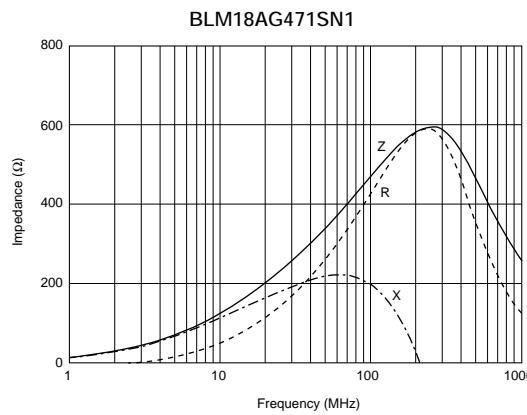
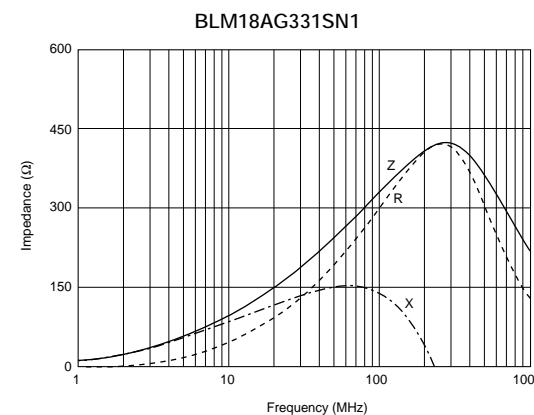
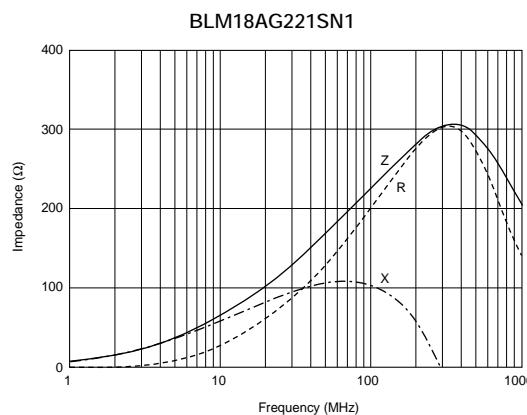

■ Impedance-Frequency (Typical)

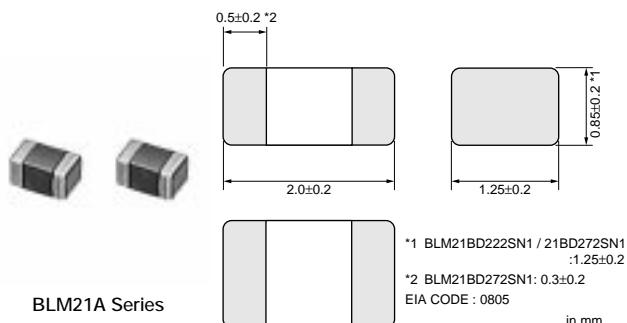
BLM18A Series



■ Impedance-Frequency Characteristics

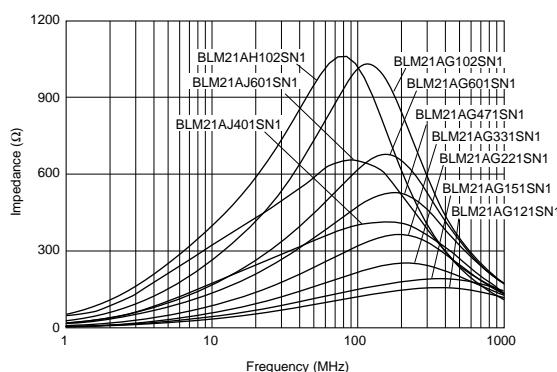
BLM18AG121SN1






BLM18AG151SN1

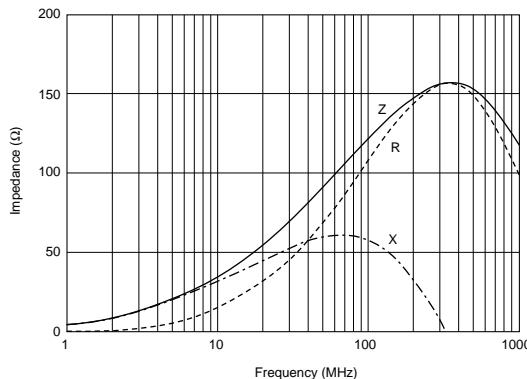

Continued on the following page.

Continued from the preceding page.

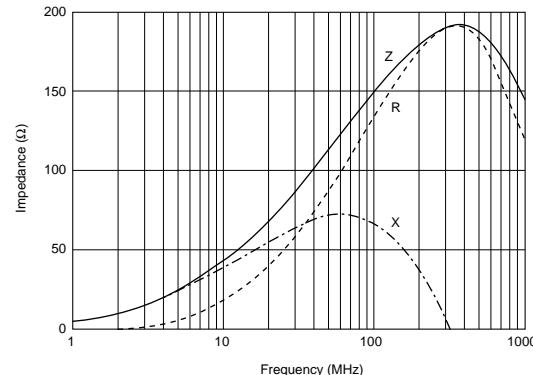
■ Impedance-Frequency Characteristics


BLM21A Series (0805 Size)

Part Number	Impedance (at 100MHz, 20 degree C) (ohm)	Rated Current (mA)	DC Resistance (max.) (ohm)	Operating Temperature Range (°C)
BLM21AG121SN1	120 ±25%	200	0.15	-55 to 125
BLM21AG151SN1	150 ±25%	200	0.15	-55 to 125
BLM21AG221SN1	220 ±25%	200	0.20	-55 to 125
BLM21AG331SN1	330 ±25%	200	0.25	-55 to 125
BLM21AJ401SN1	400 ±25%	200	0.85	-55 to 125
BLM21AG471SN1	470 ±25%	200	0.25	-55 to 125
BLM21AG601SN1	600 ±25%	200	0.30	-55 to 125
BLM21AJ601SN1	600 ±25%	200	1.10	-55 to 125
BLM21AG102SN1	1000 ±25%	200	0.45	-55 to 125
BLM21AH102SN1	1000 ±25%	200	0.45	-55 to 85

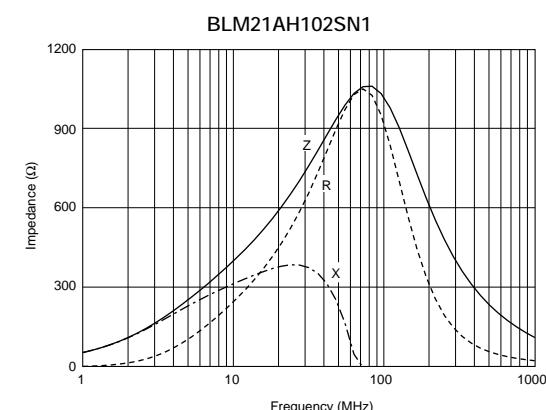
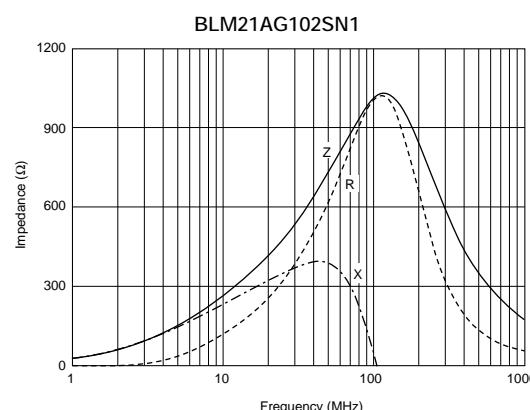
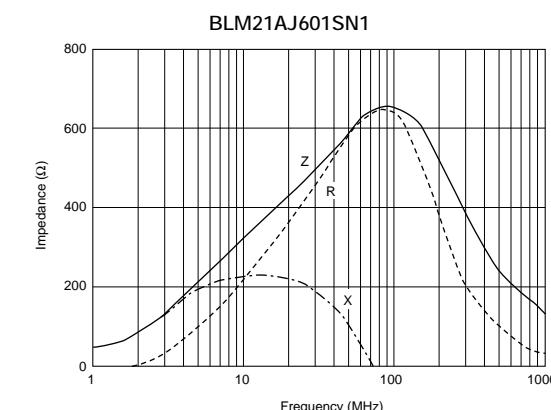
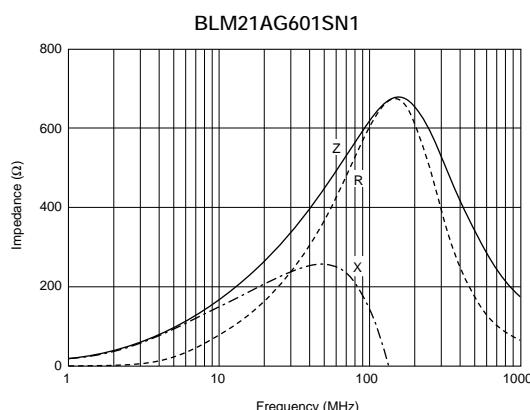
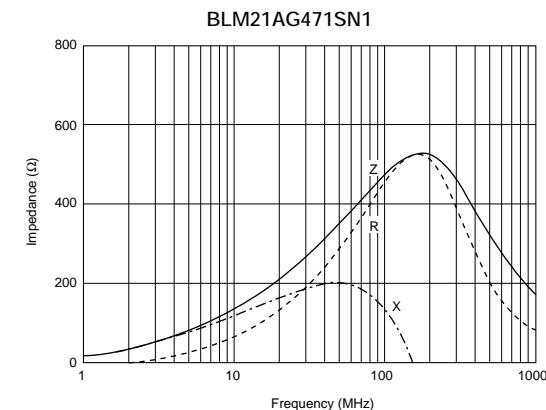
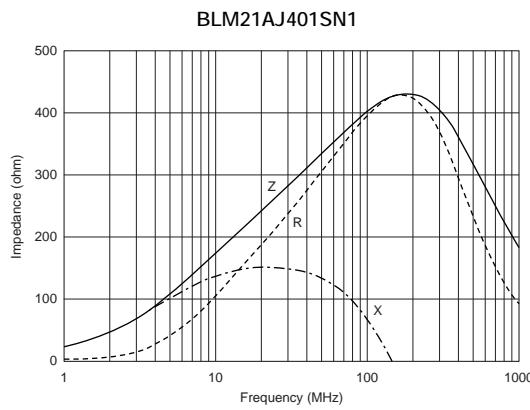
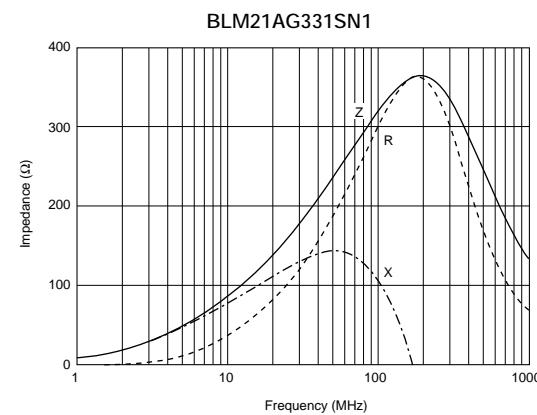
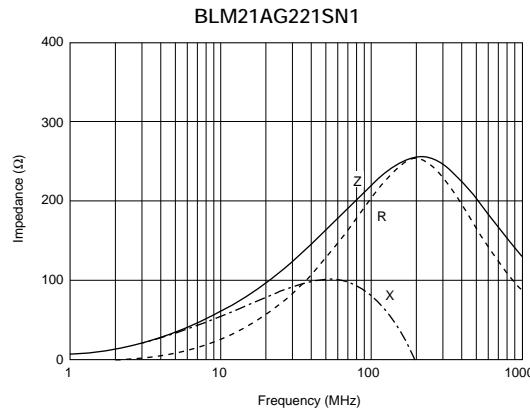

■ Impedance-Frequency (Typical)

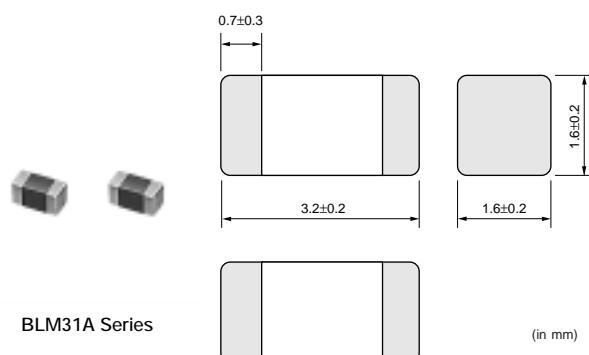
BLM21A Series



■ Impedance-Frequency Characteristics

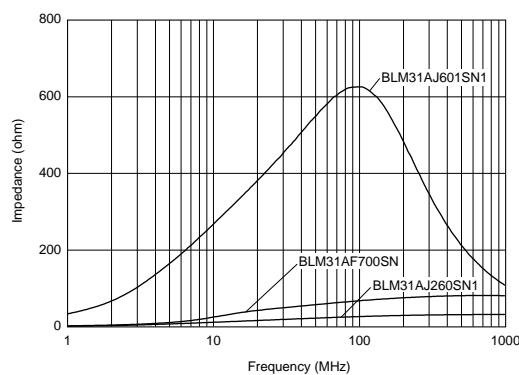
BLM21AG121SN1









BLM21AG151SN1


Continued on the following page.

Continued from the preceding page.

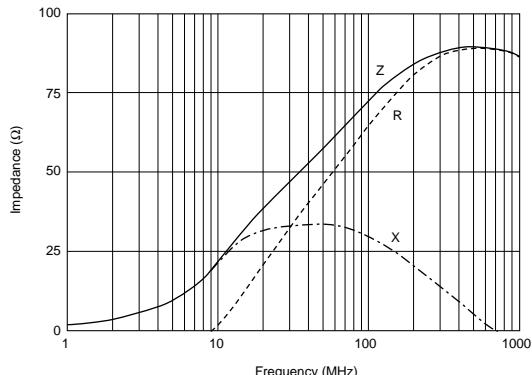
■ Impedance-Frequency Characteristics


BLM31A Series (1206 Size)

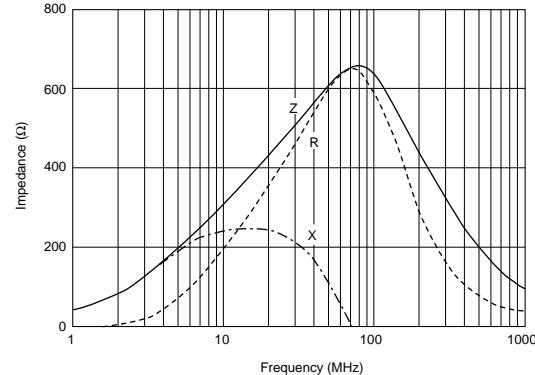
Part Number	Impedance (at 100MHz, 20 degree C) (ohm)	Rated Current (mA)	DC Resistance (max.) (ohm)	Operating Temperature Range (°C)
BLM31AJ260SN1	26 ±25%	500	0.05	-55 to 125
BLM31AF700SN1	70 ±25%	200	0.15	-55 to 125
BLM31AJ601SN1	600 ±25%	200	0.90	-55 to 125

■ Impedance-Frequency (Typical)

BLM31A Series

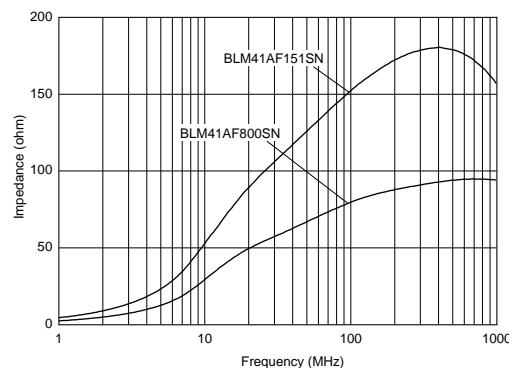


■ Impedance-Frequency Characteristics

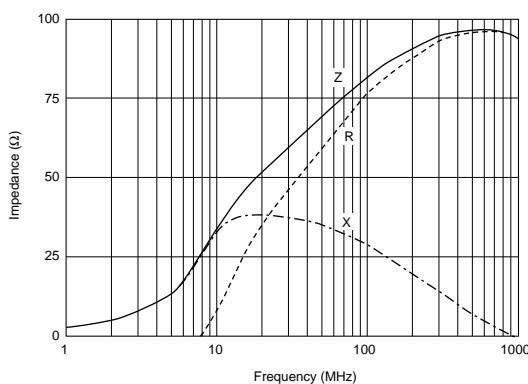

BLM31AJ260SN1

BLM31AF700SN1

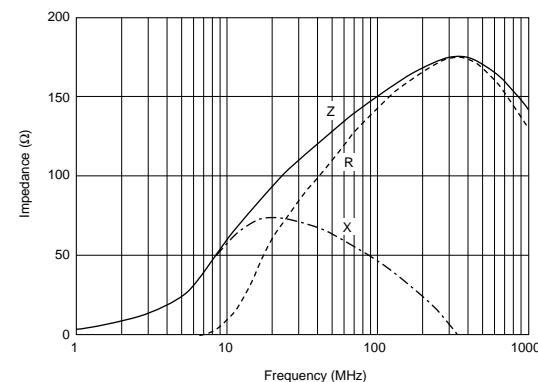
BLM31AJ601SN1


BLM41A Series (1806 Size)

Part Number	Impedance (at 100MHz, 20 degree C) (ohm)	Rated Current (mA)	DC Resistance (max.) (ohm)	Operating Temperature Range (°C)
BLM41AF800SN1	$80 \pm 25\%$	500	0.10	-55 to 125
BLM41AF151SN1	$150 \pm 25\%$	200	0.50	-55 to 125


■ Impedance-Frequency (Typical)

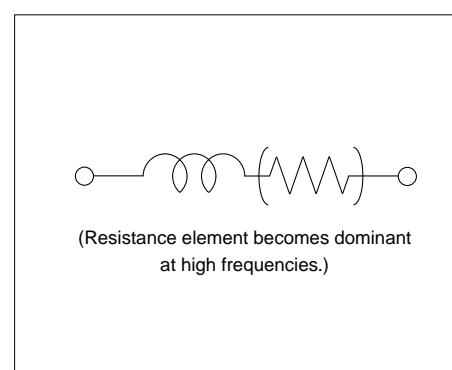
BLM41A Series



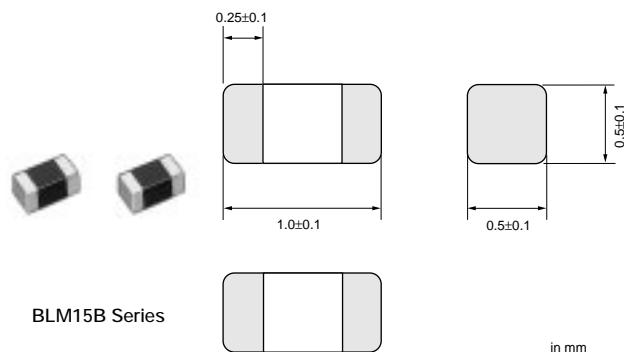
■ Impedance-Frequency Characteristics

BLM41AF800SN1

BLM41AF151SN1

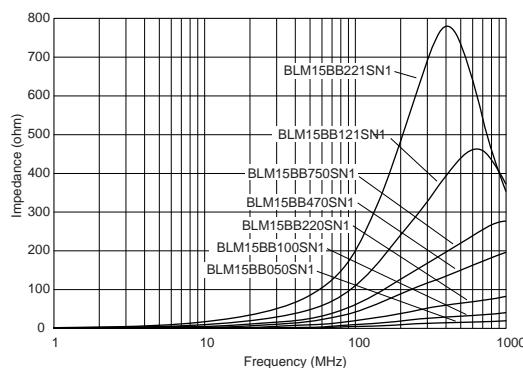


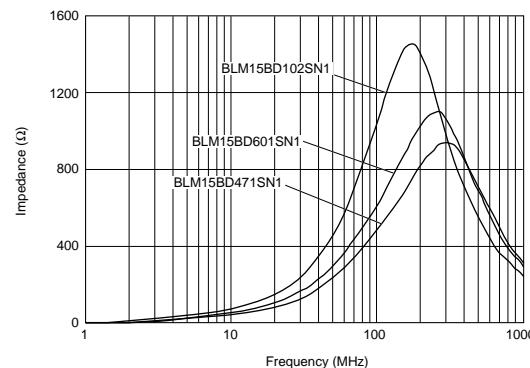
■ Features (BLM_B Series)


The chip ferrite bead BLM series comprises ferrite bead in the shape of a chip. This ferrite bead generates a high impedance which at high frequencies mainly consists of a resistance element. The BLM series is effective in circuits without stable ground lines because the BLM series does not need a connection to ground.

The nickel barrier structure of the external electrodes provides excellent solder heat resistance. The BLM_B series can minimize attenuation of the signal waveform due to its sharp impedance characteristics. Various impedances are available to match signal frequency.

■ Equivalent Circuit

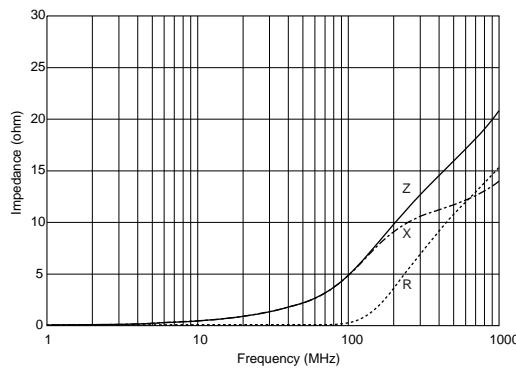

BLM15B Series (0402 Size)


Part Number	Impedance (at 100MHz, 20 degree C) (ohm)	Rated Current (mA)	DC Resistance (max.) (ohm)	Operating Temperature Range (°C)
BLM15BB050SN1	5 ±25%	500	0.08	-55 to 125
BLM15BB100SN1	10 ±25%	300	0.10	-55 to 125
BLM15BB220SN1	22 ±25%	300	0.20	-55 to 125
BLM15BB470SN1	47 ±25%	300	0.35	-55 to 125
BLM15BB750SN1	75 ±25%	300	0.40	-55 to 125
BLM15BB121SN1	120 ±25%	300	0.55	-55 to 125
BLM15BB221SN1	220 ±25%	200	0.80	-55 to 125
BLM15BD471SN1	470 ±25%	200	0.60	-55 to 125
BLM15BD601SN1	600 ±25%	200	0.65	-55 to 125
BLM15BD102SN1	1000 ±25%	200	0.90	-55 to 125

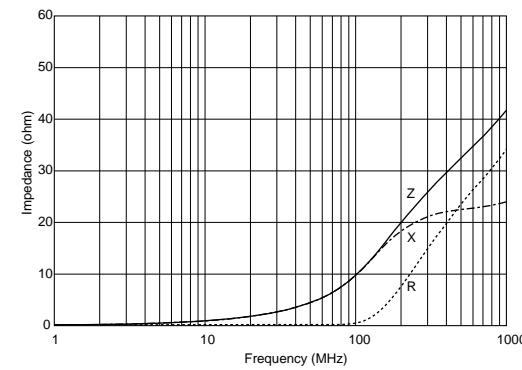
■ Impedance-Frequency (Typical)

BLM15BB Series

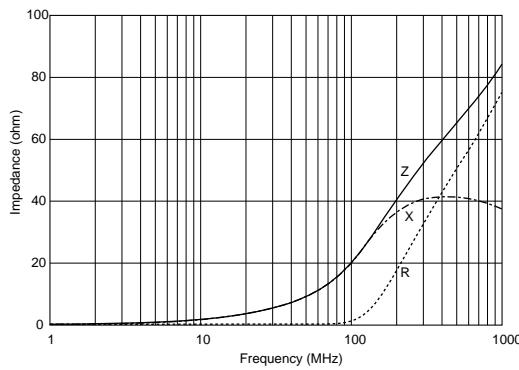
BLM15BD Series

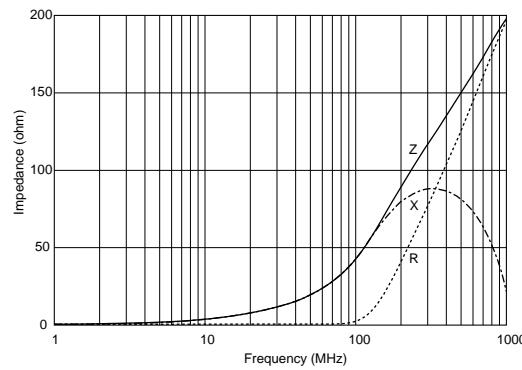


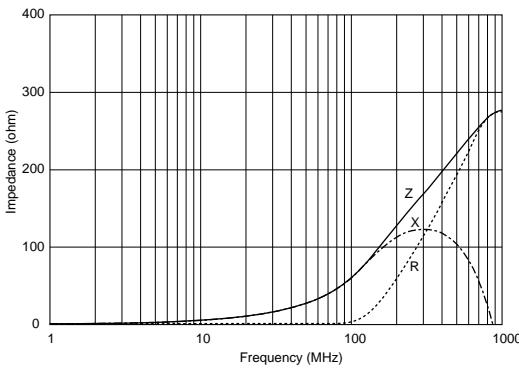
Continued on the following page.

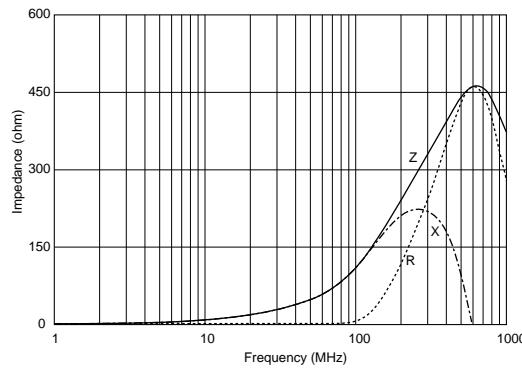

Continued from the preceding page.

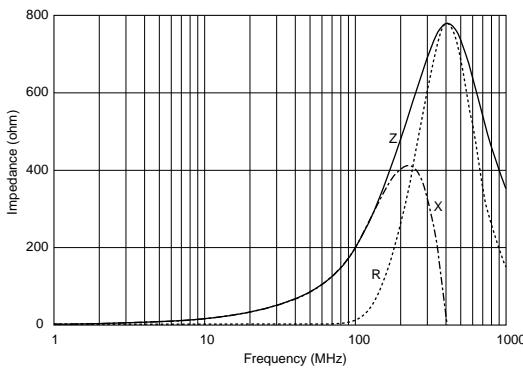
■ Impedance-Frequency Characteristics

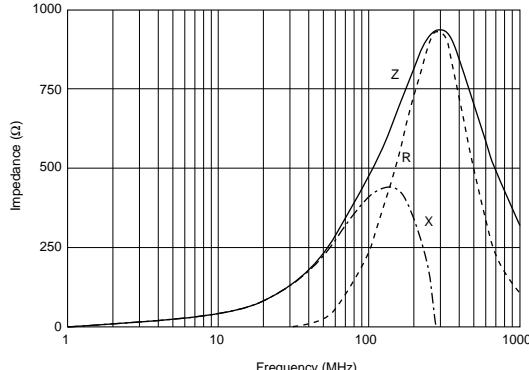

BLM15BB050SN1


BLM15BB100SN1

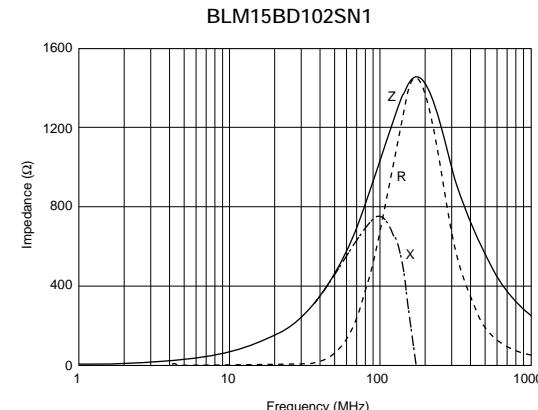
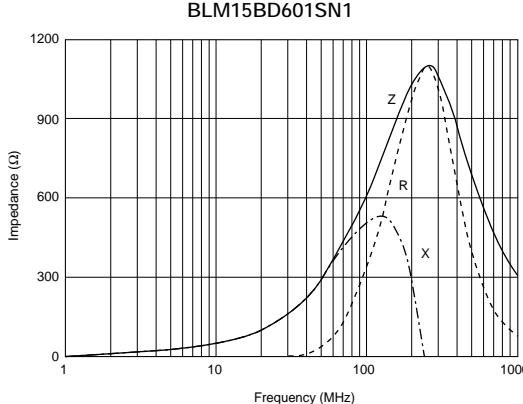

BLM15BB220SN1

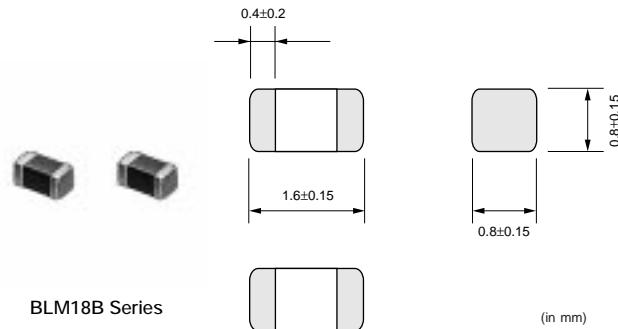

BLM15BB470SN1


BLM15BB750SN1


BLM15BB121SN1

BLM15BB221SN1



BLM15BD471SN1


Continued on the following page.

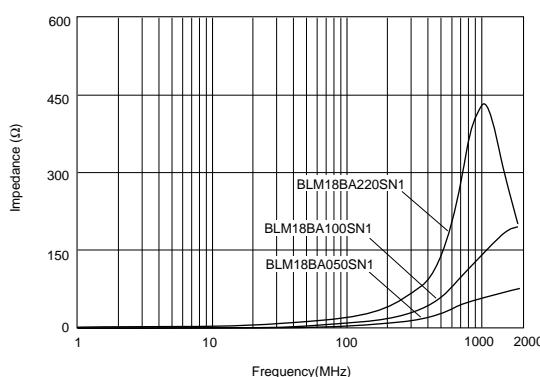
Continued from the preceding page.

■ Impedance-Frequency Characteristics

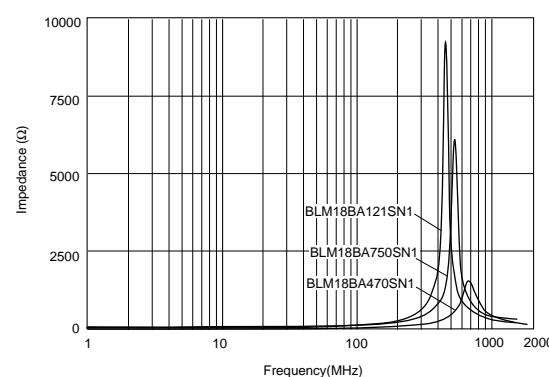
BLM18B Series (0603 Size)

Part Number	Impedance (at 100MHz, 20 degree C) (ohm)	Rated Current (mA)	DC Resistance (max.) (ohm)	Operating Temperature Range (°C)
BLM18BA050SN1	5 ±25%	500	0.20	-55 to 125
BLM18BB050SN1	5 ±25%	700	0.10	-55 to 125
BLM18BA100SN1	10 ±25%	500	0.25	-55 to 125
BLM18BB100SN1	10 ±25%	500	0.15	-55 to 125
BLM18BA220SN1	22 ±25%	500	0.35	-55 to 125
BLM18BB220SN1	22 ±25%	500	0.25	-55 to 125
BLM18BA470SN1	47 ±25%	300	0.55	-55 to 125
BLM18BB470SN1	47 ±25%	500	0.30	-55 to 125
BLM18BB600SN1	60 ±25%	200	0.35	-55 to 125
BLM18BA750SN1	75 ±25%	300	0.70	-55 to 125
BLM18BB750SN1	75 ±25%	200	0.35	-55 to 125
BLM18BA121SN1	120 ±25%	200	0.90	-55 to 125
BLM18BB121SN1	120 ±25%	200	0.50	-55 to 125
BLM18BD121SN1	120 ±25%	200	0.40	-55 to 125
BLM18BB141SN1	140 ±25%	200	0.55	-55 to 125
BLM18BB151SN1	150 ±25%	200	0.55	-55 to 125
BLM18BD151SN1	150 ±25%	200	0.40	-55 to 125
BLM18BB221SN1	220 ±25%	200	0.65	-55 to 125
BLM18BD221SN1	220 ±25%	200	0.45	-55 to 125
BLM18BB331SN1	330 ±25%	200	0.75	-55 to 125
BLM18BD331SN1	330 ±25%	200	0.50	-55 to 125
BLM18BD421SN1	420 ±25%	200	0.55	-55 to 125
BLM18BB471SN1	470 ±25%	50	1.00	-55 to 125
BLM18BD471SN1	470 ±25%	200	0.55	-55 to 125
BLM18BD601SN1	600 ±25%	200	0.65	-55 to 125
BLM18BD102SN1	1000 ±25%	100	0.85	-55 to 125
BLM18BD152SN1	1500 ±25%	50	1.20	-55 to 125
BLM18BD182SN1	1800 ±25%	50	1.50	-55 to 125

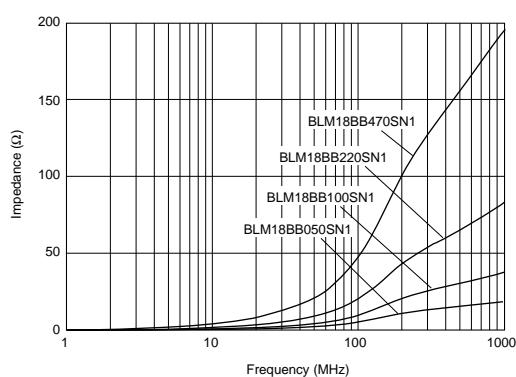
Continued on the following page.

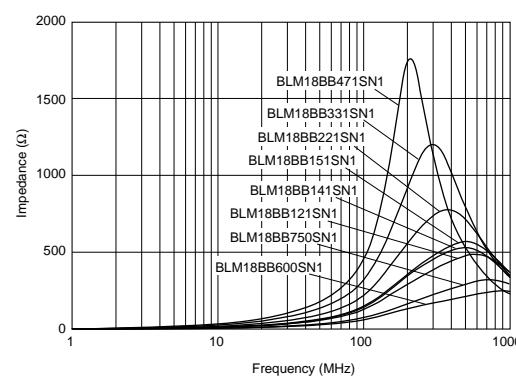

Continued from the preceding page.

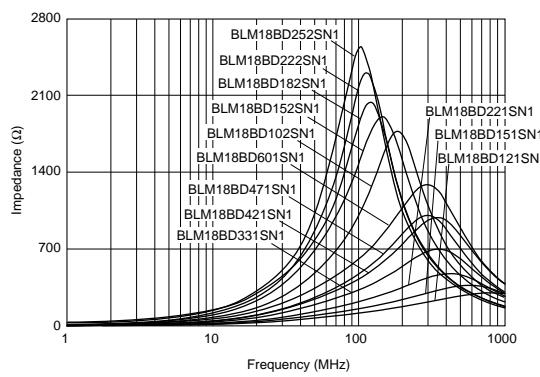
Part Number	Impedance (at 100MHz, 20 degree C) (ohm)	Rated Current (mA)	DC Resistance (max.) (ohm)	Operating Temperature Range (°C)
BLM18BD222SN1	2200 ±25%	50	1.50	-55 to 125
BLM18BD252SN1	2500 ±25%	50	1.50	-55 to 125


Rated current is 6A for taping type.

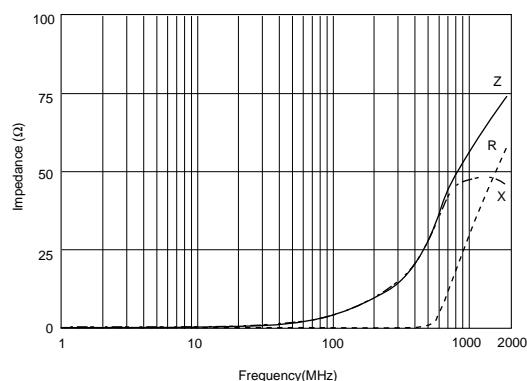
■ Impedance-Frequency (Typical)


BLM18BA Series

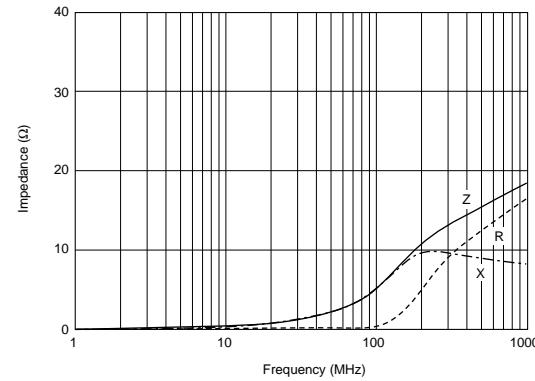

BLM18BA Series


BLM18BB Series

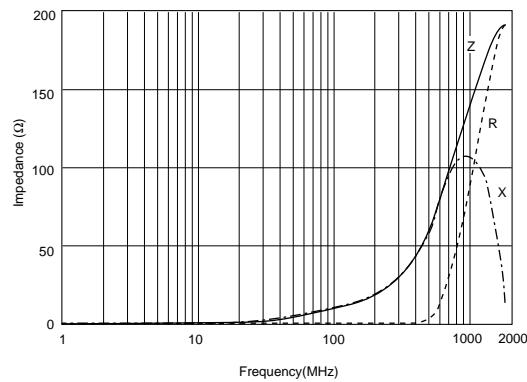
BLM18BB Series

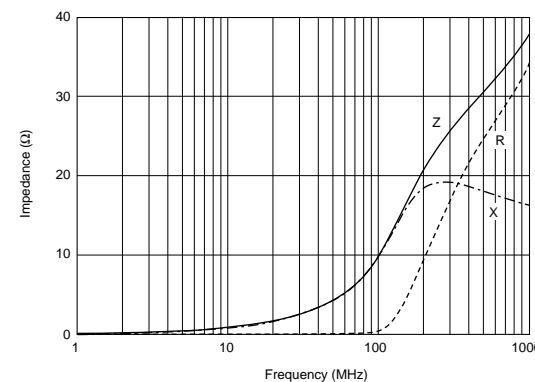


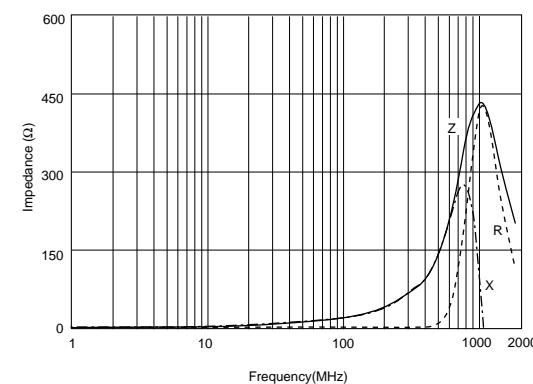
BLM18BD Series

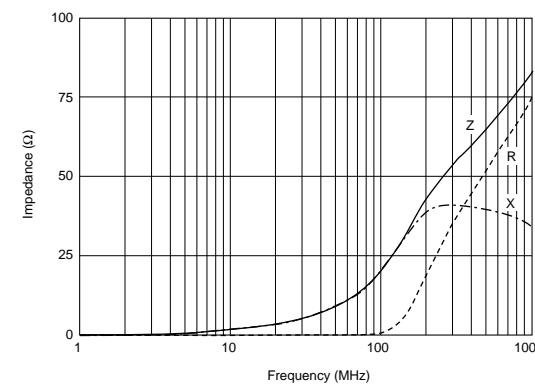


■ Impedance-Frequency Characteristics

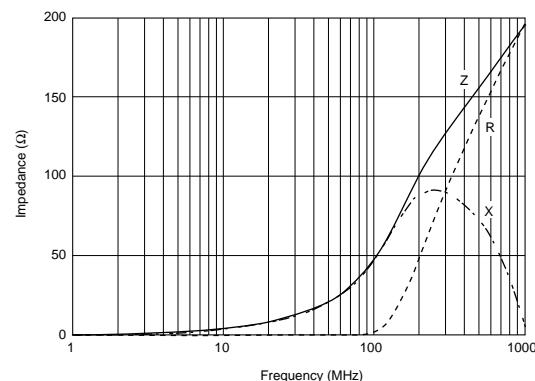

BLM18BA050SN1


BLM18BB050SN1

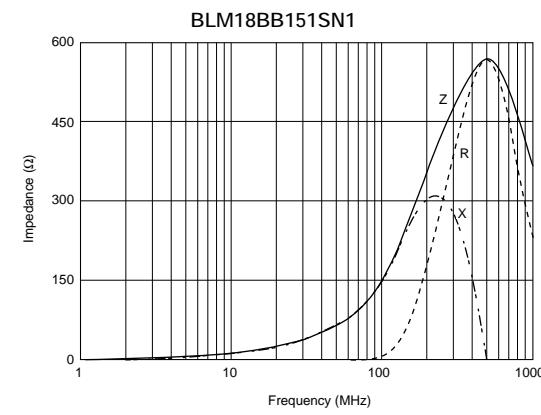
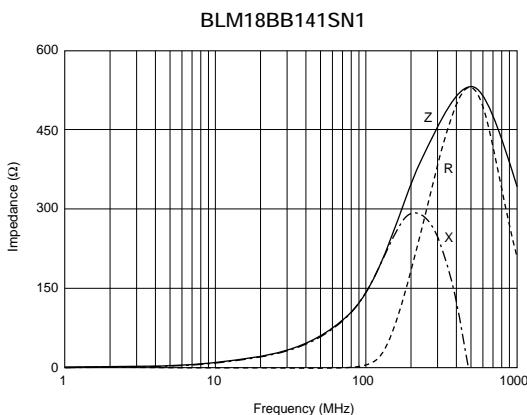
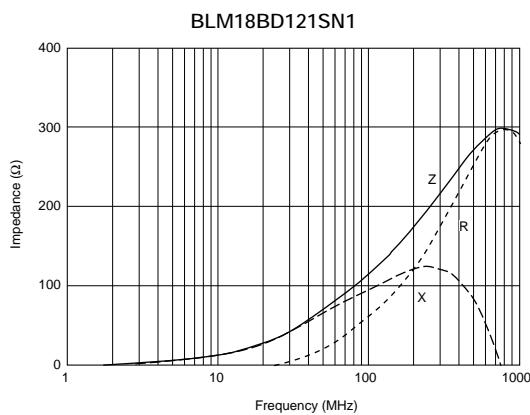
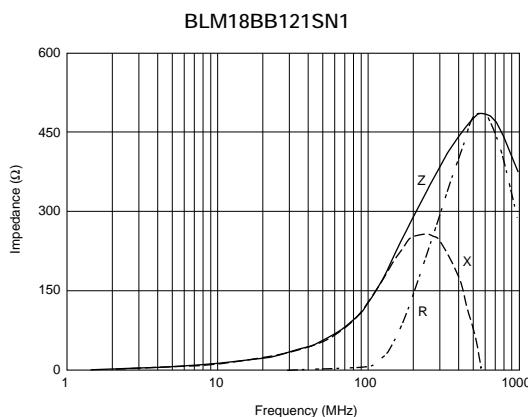
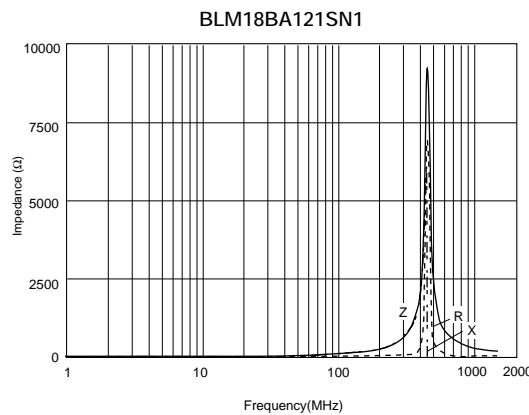
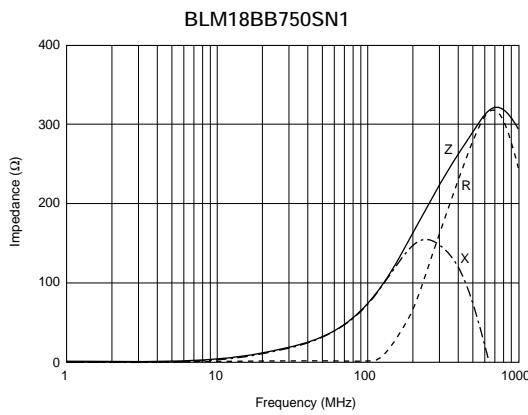
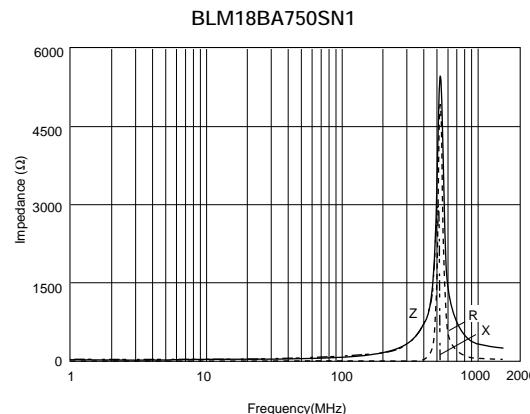
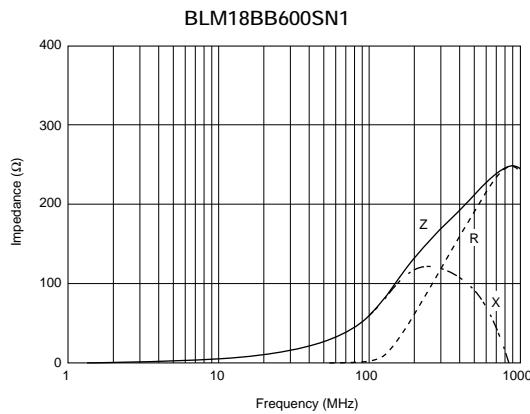

BLM18BA100SN1


BLM18BB100SN1

BLM18BA220SN1

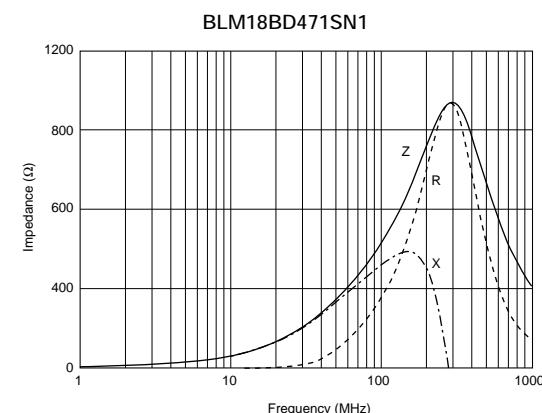
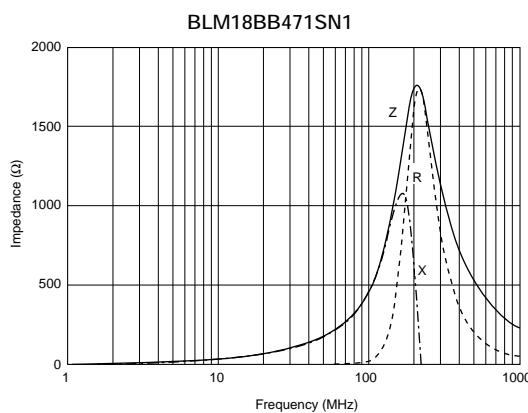
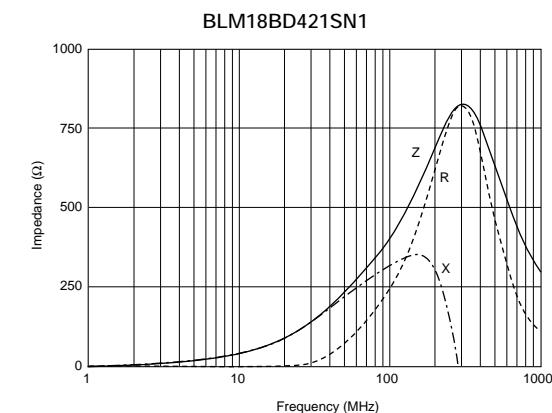
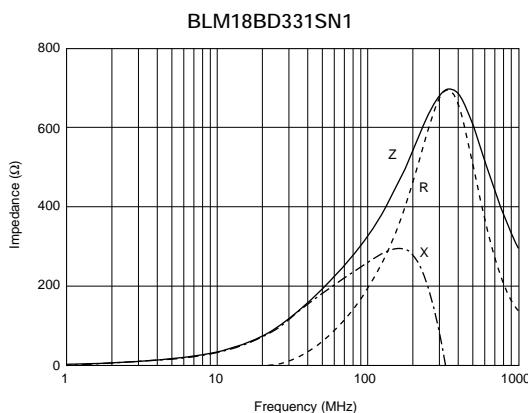
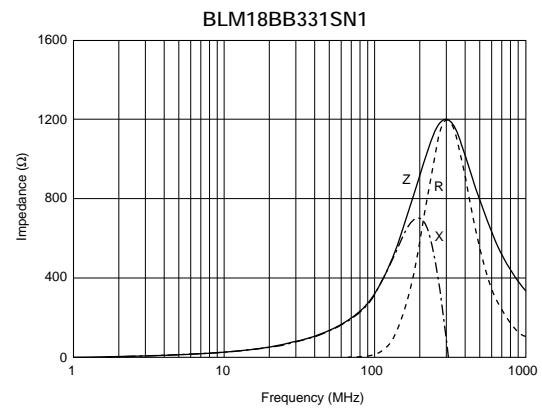
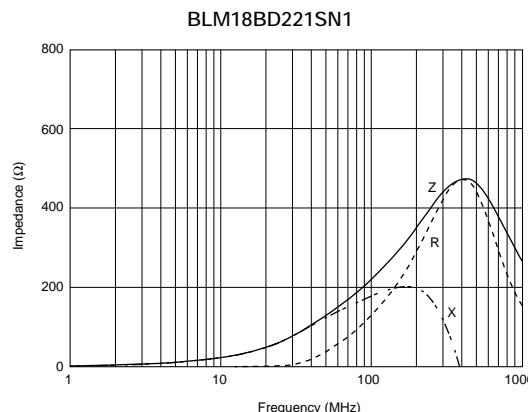
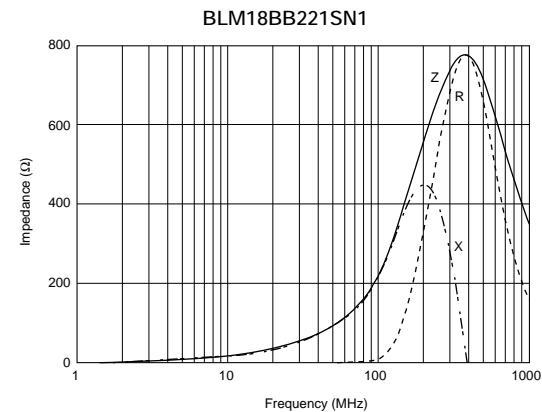
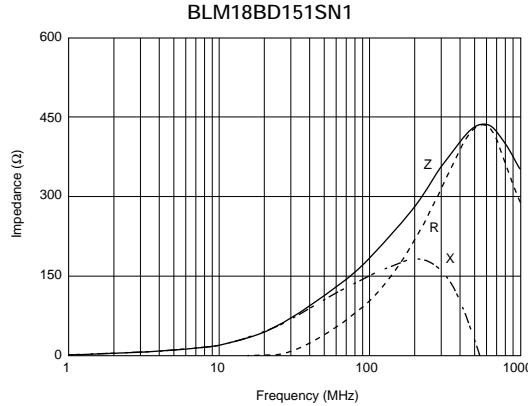

BLM18BB220SN1

BLM18BA470SN1









BLM18BB470SN1

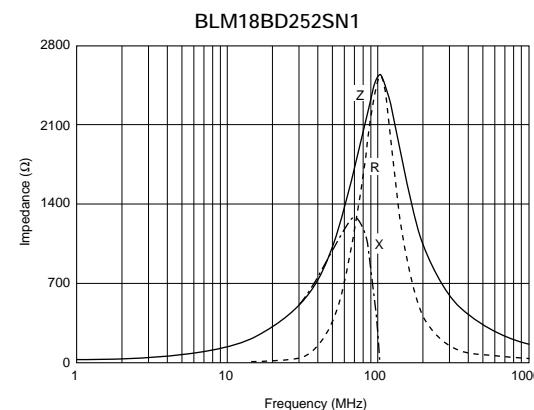
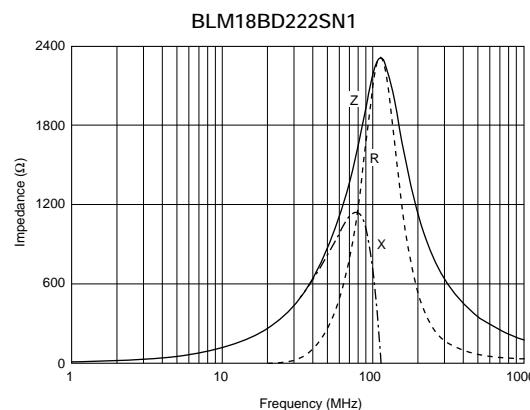
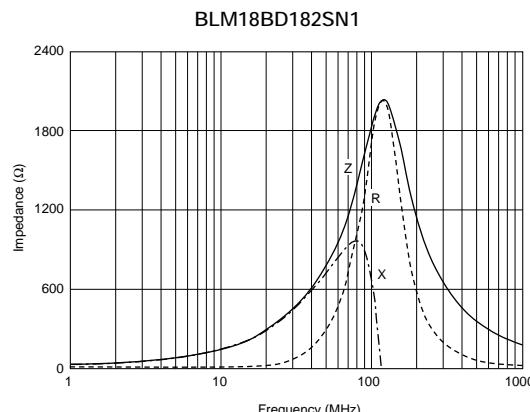
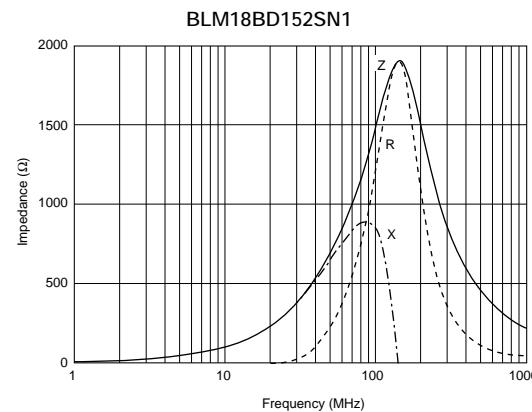
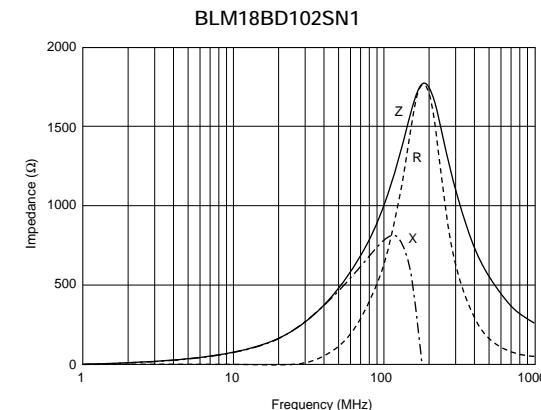
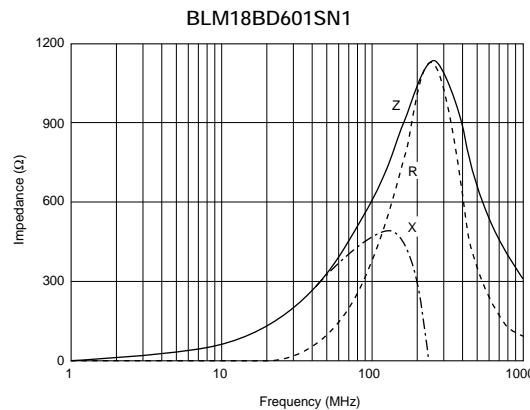
Continued on the following page.

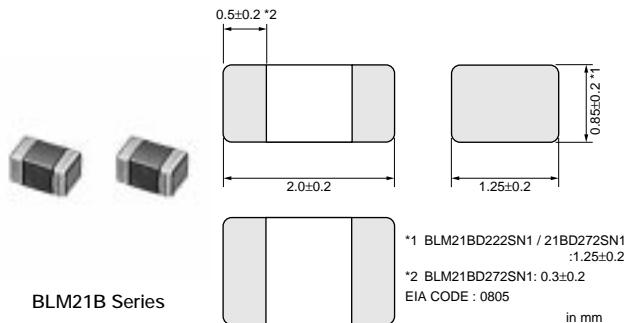
Continued from the preceding page.









■ Impedance-Frequency Characteristics

Continued on the following page.

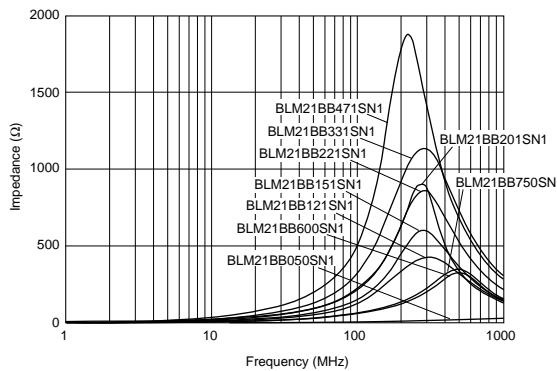
Continued from the preceding page.

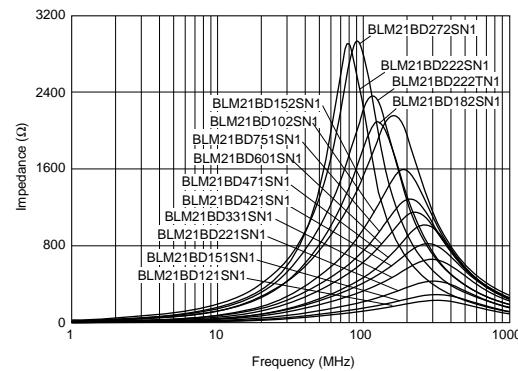






■ Impedance-Frequency Characteristics


Continued on the following page.

Continued from the preceding page.

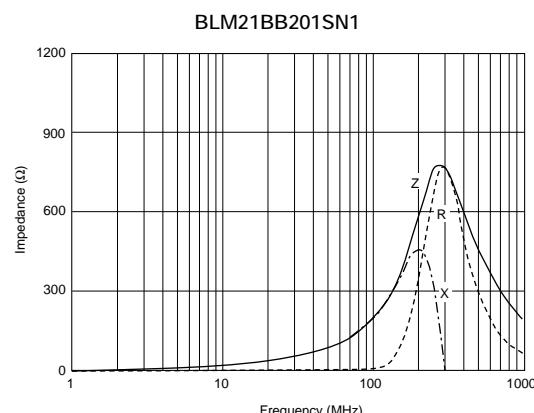
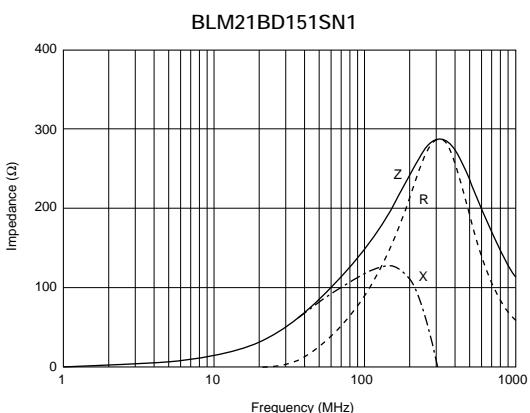
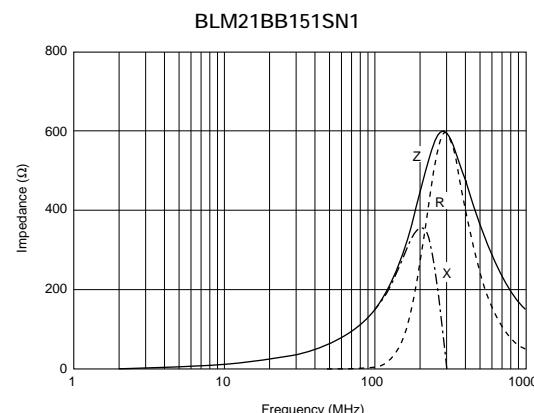
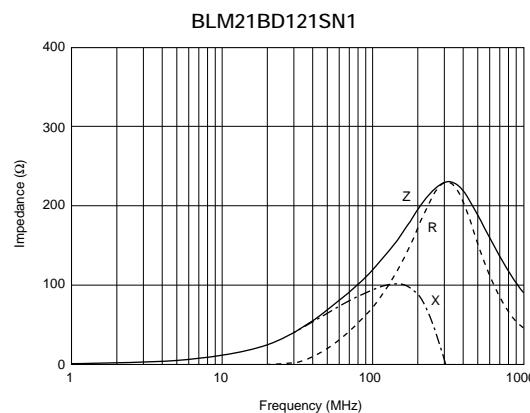
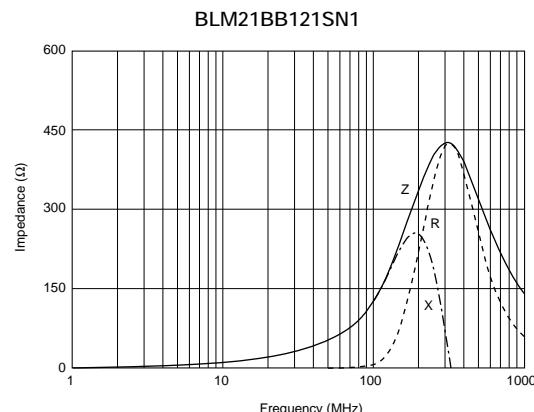
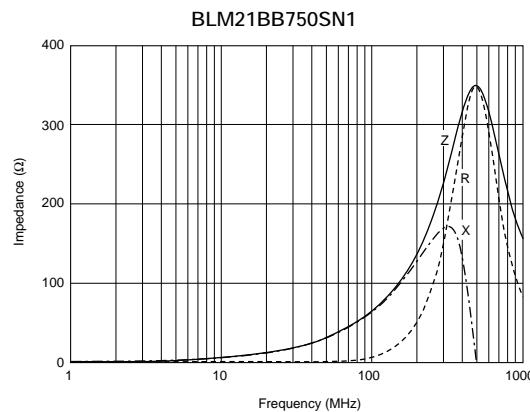
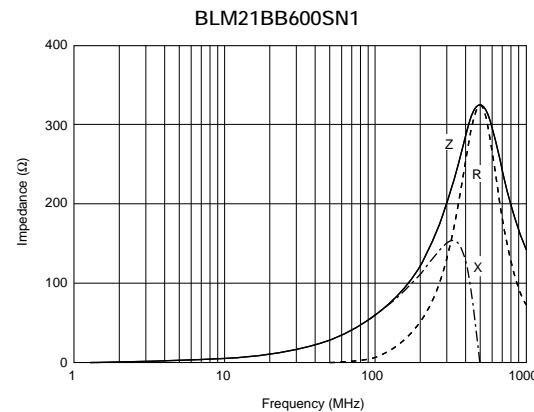
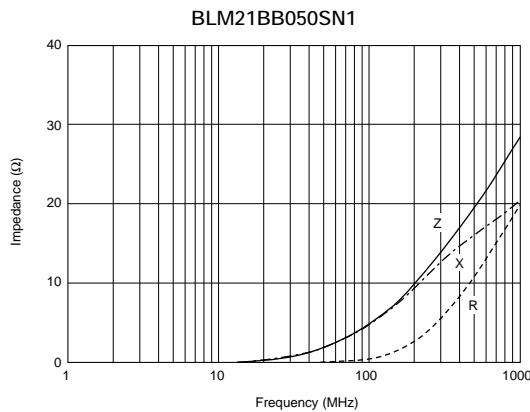
■ Impedance-Frequency Characteristics


BLM21B Series (0805 Size)


Part Number	Impedance (at 100MHz, 20 degree C) (ohm)	Rated Current (mA)	DC Resistance (max.) (ohm)	Operating Temperature Range (°C)
BLM21BB050SN1	5 ±25%	500	0.07	-55 to 125
BLM21BB600SN1	60 ±25%	200	0.20	-55 to 125
BLM21BB750SN1	75 ±25%	200	0.25	-55 to 125
BLM21BB121SN1	120 ±25%	200	0.25	-55 to 125
BLM21BD121SN1	120 ±25%	200	0.25	-55 to 125
BLM21BB151SN1	150 ±25%	200	0.25	-55 to 125
BLM21BD151SN1	150 ±25%	200	0.25	-55 to 125
BLM21BB201SN1	200 ±25%	200	0.35	-55 to 125
BLM21BB221SN1	220 ±25%	200	0.35	-55 to 125
BLM21BD221SN1	220 ±25%	200	0.25	-55 to 125
BLM21BB331SN1	330 ±25%	200	0.40	-55 to 125
BLM21BD331SN1	330 ±25%	200	0.30	-55 to 125
BLM21BD421SN1	420 ±25%	200	0.30	-55 to 125
BLM21BB471SN1	470 ±25%	200	0.45	-55 to 125
BLM21BD471SN1	470 ±25%	200	0.35	-55 to 125
BLM21BD601SN1	600 ±25%	200	0.35	-55 to 125
BLM21BD751SN1	750 ±25%	200	0.40	-55 to 125
BLM21BD102SN1	1000 ±25%	200	0.40	-55 to 125
BLM21BD152SN1	1500 ±25%	200	0.45	-55 to 125
BLM21BD182SN1	1800 ±25%	200	0.50	-55 to 125
BLM21BD222TN1	2200 ±25%	200	0.60	-55 to 125
BLM21BD222SN1	2250 (Typ.)	200	0.60	-55 to 125
BLM21BD272SN1	2700 ±25%	200	0.80	-55 to 125

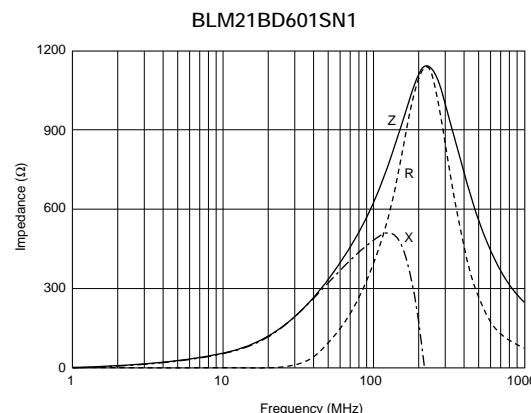
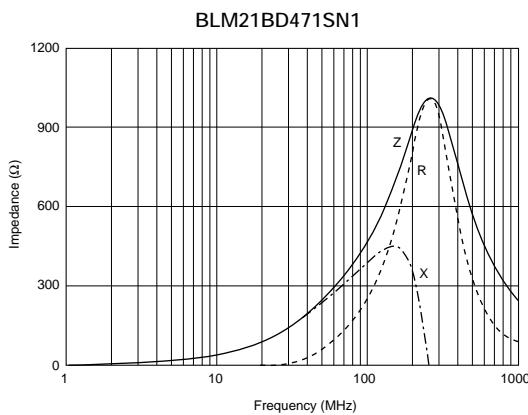
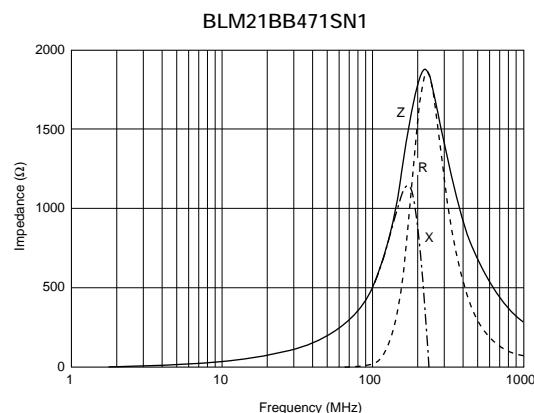
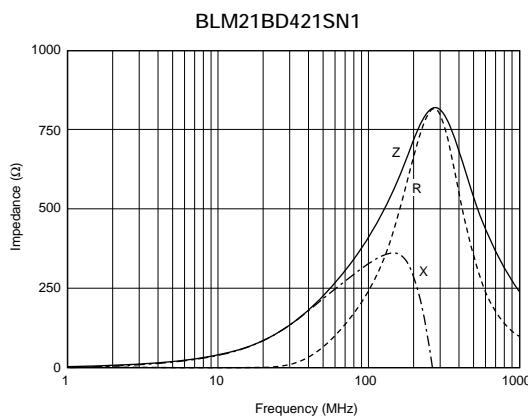
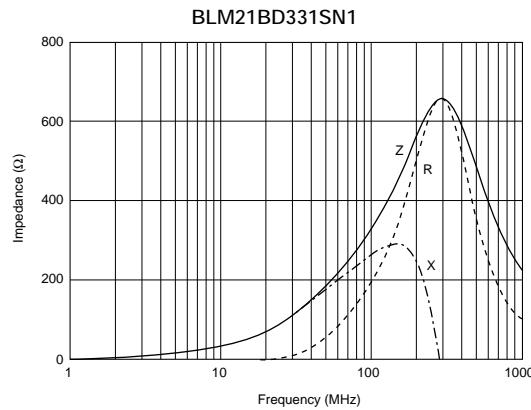
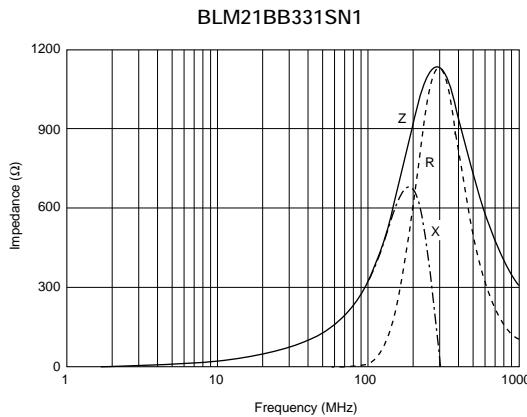
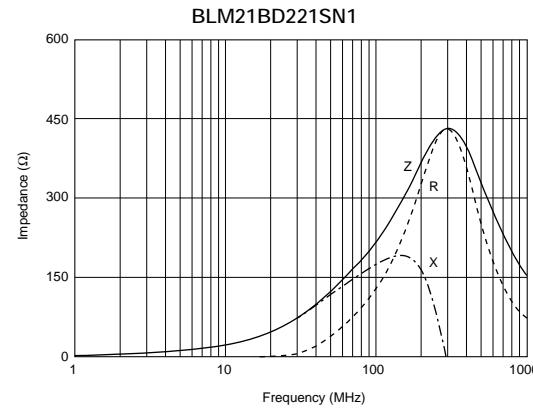
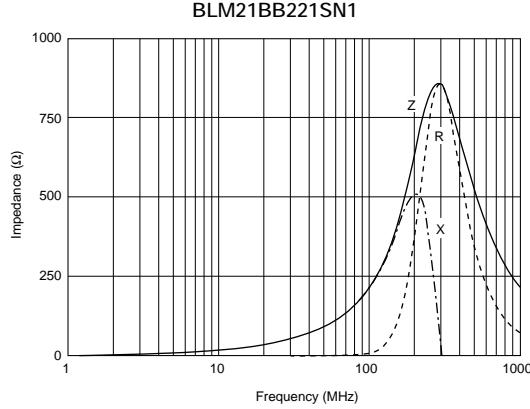
■ Impedance-Frequency (Typical)

BLM21BB Series









BLM21BD Series

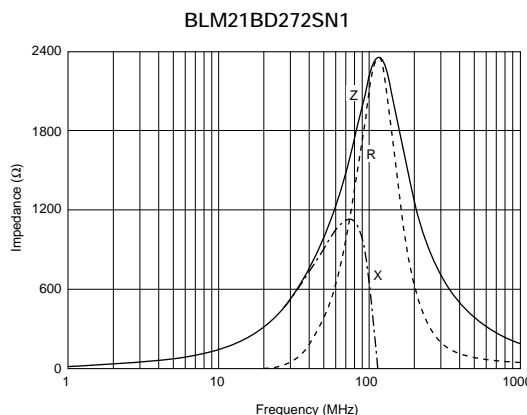
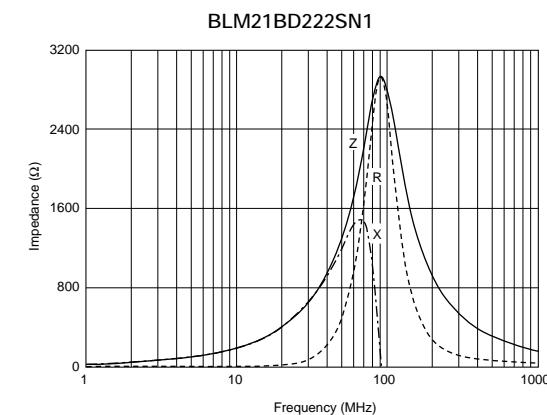
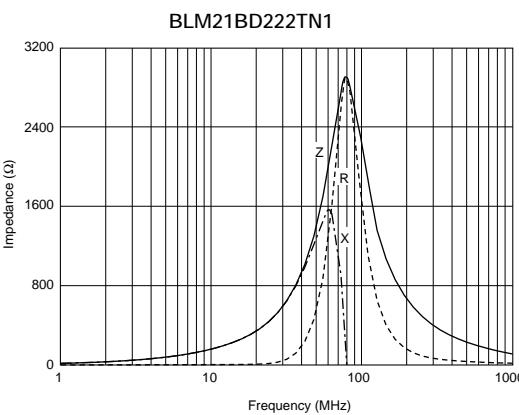
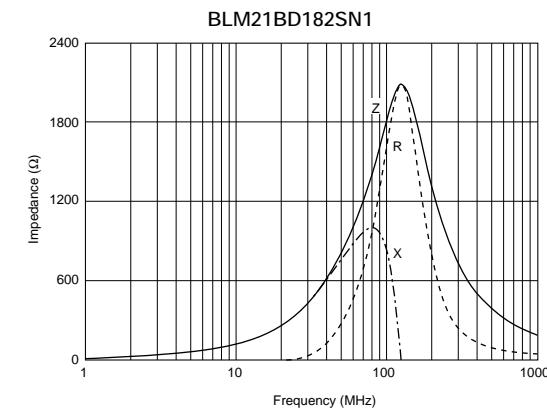
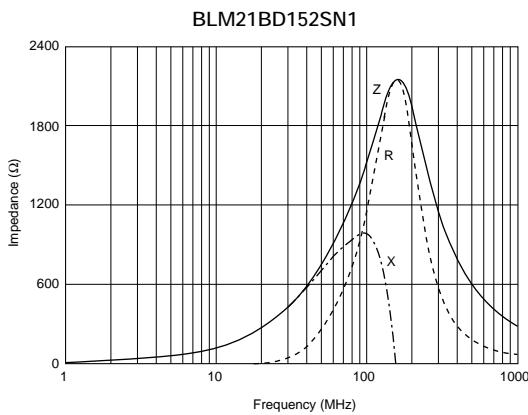
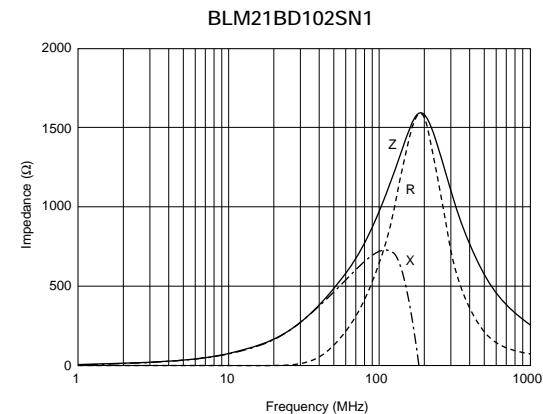
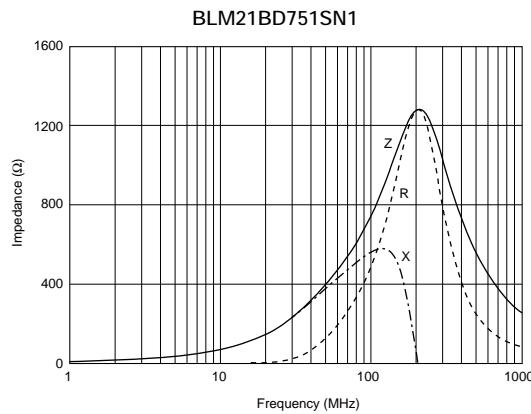
Continued on the following page.

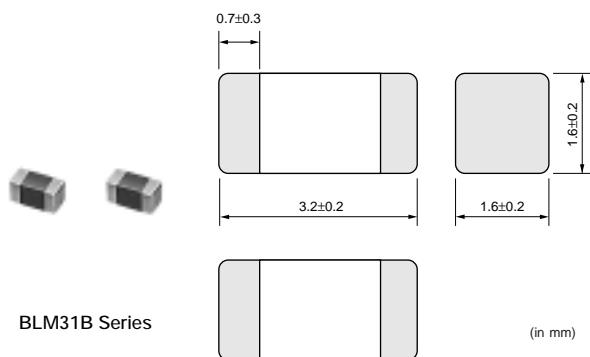
Continued from the preceding page.









■ Impedance-Frequency Characteristics

Continued on the following page.

Continued from the preceding page.

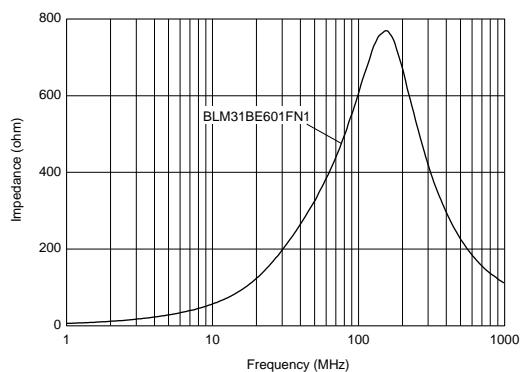







■ Impedance-Frequency Characteristics


Continued on the following page.

Continued from the preceding page.

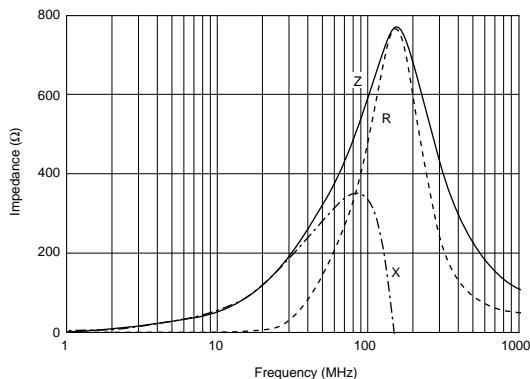
■ Impedance-Frequency Characteristics

BLM31B Series (1206 Size)



(in mm)

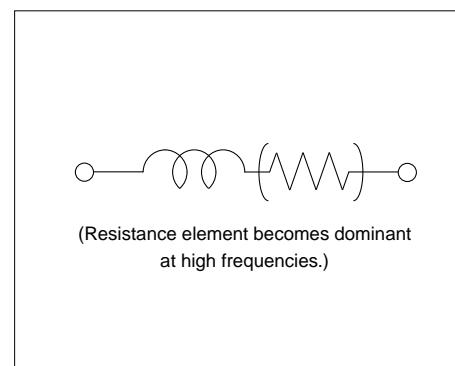
Part Number	Impedance (at 100MHz, 20 degree C) (ohm)	Rated Current (mA)	DC Resistance (max.) (ohm)	Operating Temperature Range (°C)
BLM31BE601FN1	600 ±25%	300	0.35	-55 to 125


■ Impedance-Frequency (Typical)

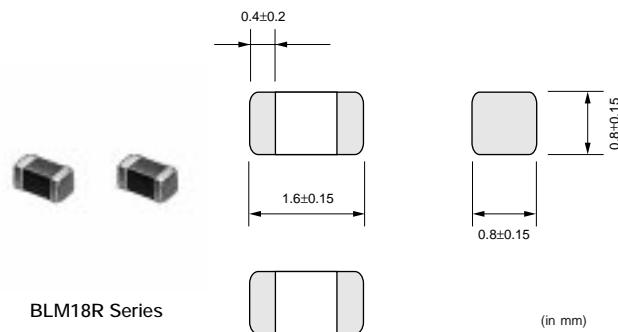
BLM31B Series

■ Impedance-Frequency Characteristics

BLM31BE601FN1

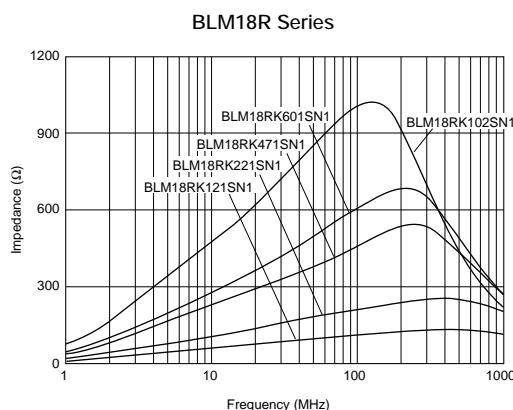


■ Features (BLM_R Series)

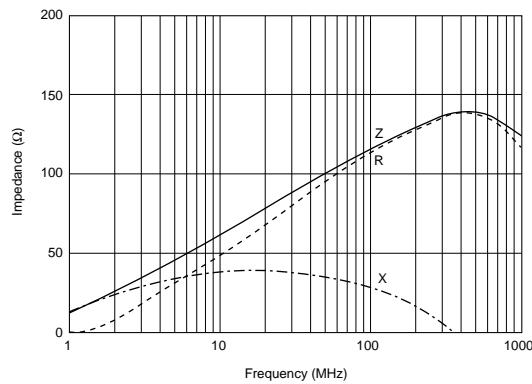

The chip ferrite bead BLM series comprises ferrite bead in the shape of a chip. This ferrite bead generates a high impedance which at high frequencies mainly consists of a resistance element. The BLM series is effective in circuits without stable ground lines because the BLM series does not need a connection to ground.

The nickel barrier structure of the external electrodes provides excellent solder heat resistance. The BLM_R series can be used in Digital Interface. Resistance of BLM_R series especially grows in the lower frequency range. Therefore BLM_R series is less effect for Digital signal waveform at low frequency range and can suppress the ringing.

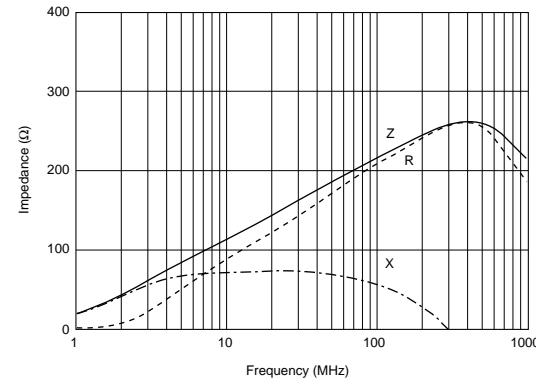
■ Equivalent Circuit



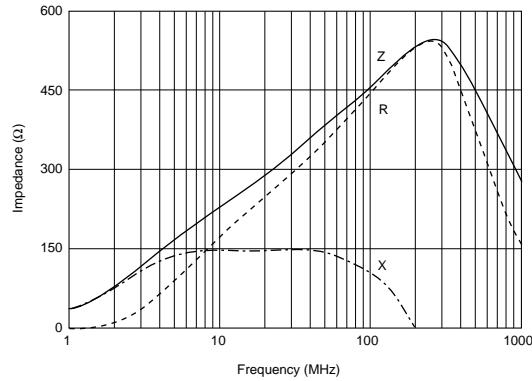
BLM18R Series (0603 Size)

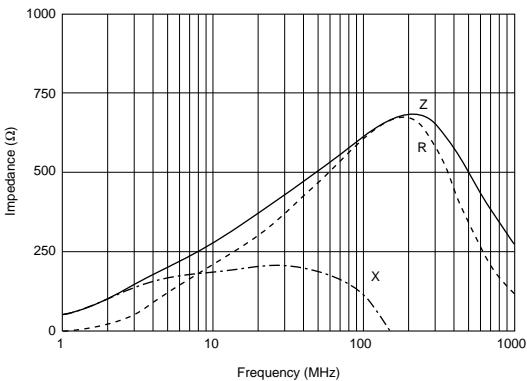

Part Number	Impedance (at 100MHz, 20 degree C) (ohm)	Rated Current (mA)	DC Resistance (max.) (ohm)	Operating Temperature Range (°C)
BLM18RK121SN1	120 ±25%	200	0.25	-55 to 125
BLM18RK221SN1	220 ±25%	200	0.30	-55 to 125
BLM18RK471SN1	470 ±25%	200	0.50	-55 to 125
BLM18RK601SN1	600 ±25%	200	0.60	-55 to 125
BLM18RK102SN1	1000 ±25%	200	0.80	-55 to 125

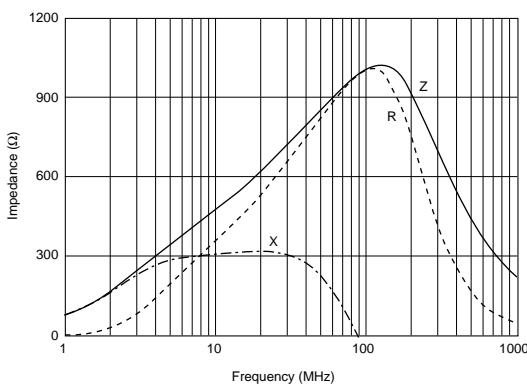
■ Impedance-Frequency (Typical)

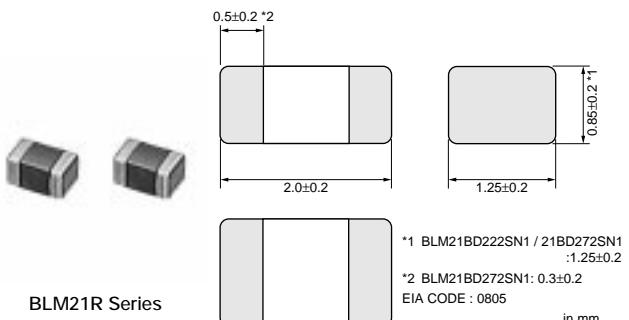


■ Impedance-Frequency Characteristics

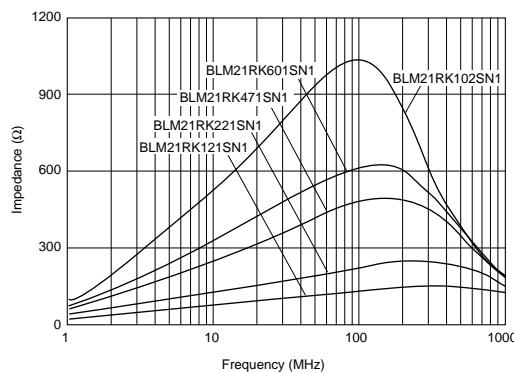

BLM18RK121SN1


BLM18RK221SN1

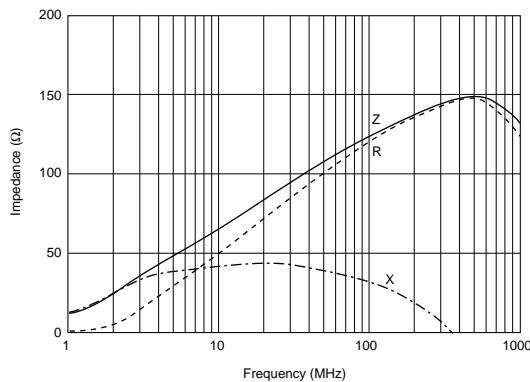

BLM18RK471SN1


BLM18RK601SN1

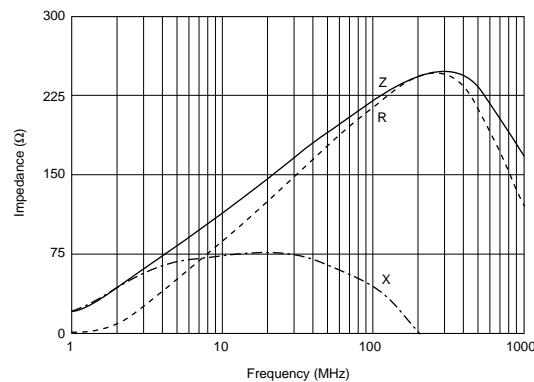
BLM18RK102SN1


BLM21R Series (0805 Size)

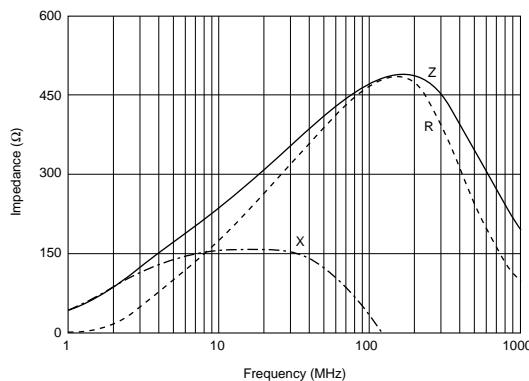
Part Number	Impedance (at 100MHz, 20 degree C) (ohm)	Rated Current (mA)	DC Resistance (max.) (ohm)	Operating Temperature Range (°C)
BLM21RK121SN1	120 $\pm 25\%$	200	0.15	-55 to 125
BLM21RK221SN1	220 $\pm 25\%$	200	0.20	-55 to 125
BLM21RK471SN1	470 $\pm 25\%$	200	0.25	-55 to 125
BLM21RK601SN1	600 $\pm 25\%$	200	0.30	-55 to 125
BLM21RK102SN1	1000 $\pm 25\%$	200	0.50	-55 to 125

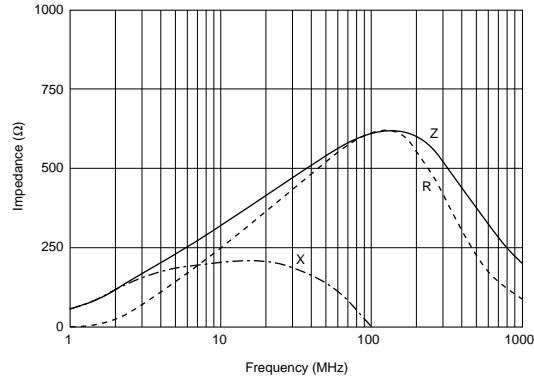

■ Impedance-Frequency (Typical)

BLM21R Series



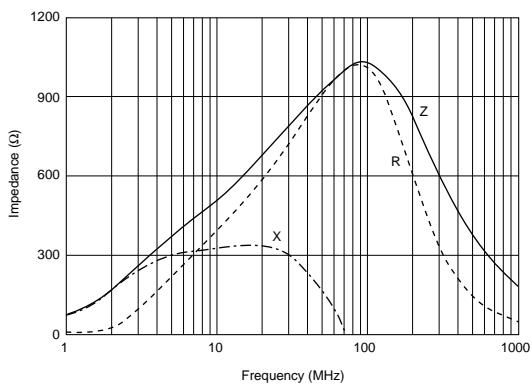
■ Impedance-Frequency Characteristics


BLM21RK121SN1


BLM21RK221SN1

BLM21RK471SN1

BLM21RK601SN1

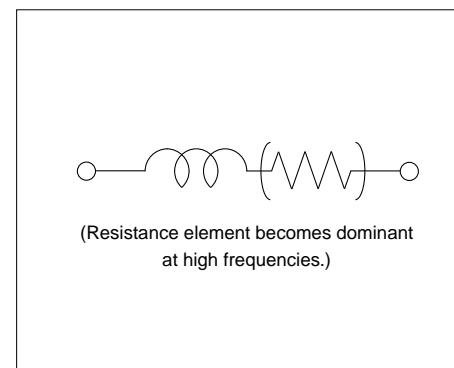


Continued on the following page.

Continued from the preceding page.

■ Impedance-Frequency Characteristics

BLM21RK102SN1



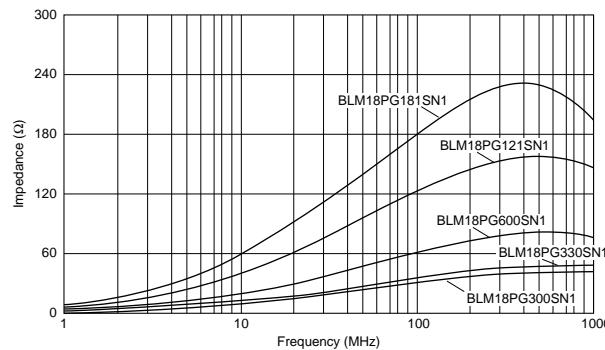
■ Features (BLM_P Series)

The chip ferrite bead BLM series comprises ferrite bead in the shape of a chip. This ferrite bead generates a high impedance which at high frequencies mainly consists of a resistance element. The BLM series is effective in circuits without stable ground lines because the BLM series does not need a connection to ground.

The nickel barrier structure of the external electrodes provides excellent solder heat resistance. The BLM_P series can be used in high current circuits due to its low DC resistance. It can match power lines to a maximum of 6A DC (BLM41P).

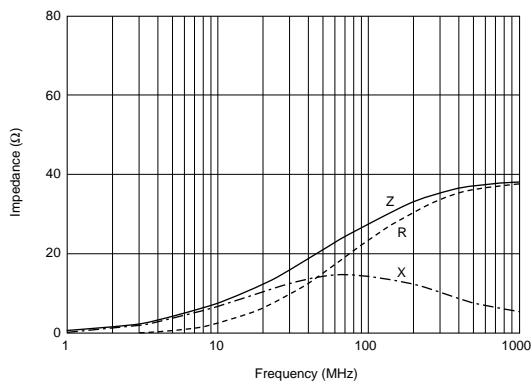
■ Equivalent Circuit

BLM18P Series (0603 Size)

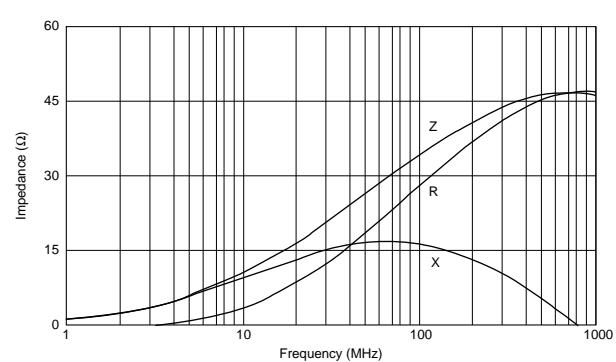


Part Number	Impedance (at 100MHz, 20 degree C) (ohm)	Rated Current (mA)	DC Resistance (max.) (ohm)	Operating Temperature Range (°C)
BLM18PG300SN1	30 (Typ.)	1000	0.05	-55 to 125
BLM18PG330SN1	33 ±25%	3000	0.025	-55 to 125
BLM18PG600SN1	60 (Typ.)	500	0.10	-55 to 125
BLM18PG121SN1	120 ±25%	2000	0.05	-55 to 125
BLM18PG181SN1	180 ±25%	1500	0.09	-55 to 125

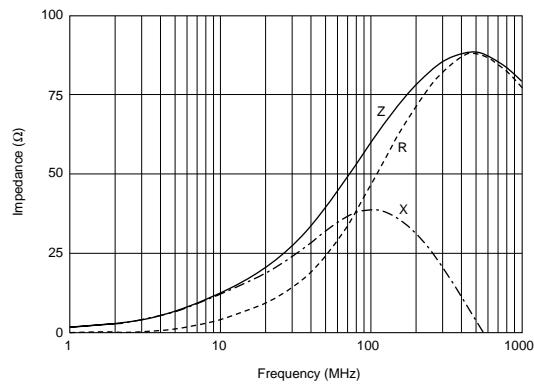
When the BLM_P series is for Large-current used in operating temperatures exceeding +85 °C, derating of current is necessary.
Please apply the derating curve shown in Notice (Rating) of BLM_P series according to the operating temperature.

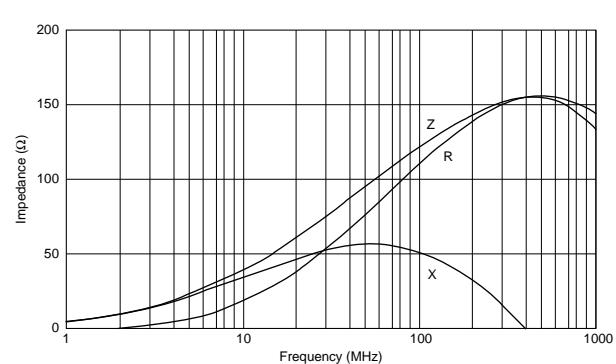

■ Impedance-Frequency (Typical)

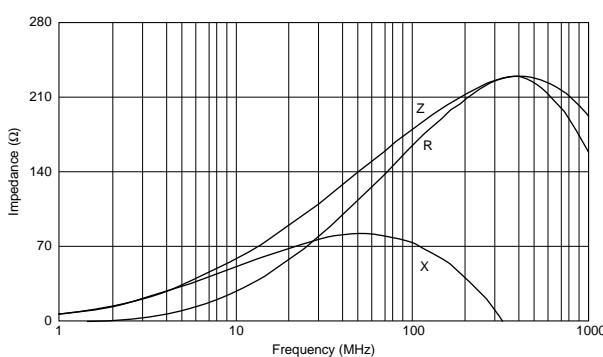
BLM18P Series

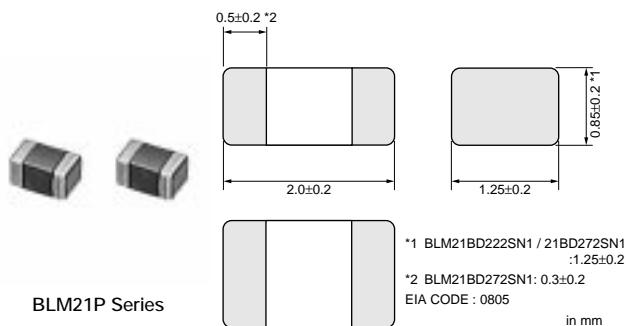


■ Impedance-Frequency Characteristics


BLM18PG300SN1


BLM18PG330SN1

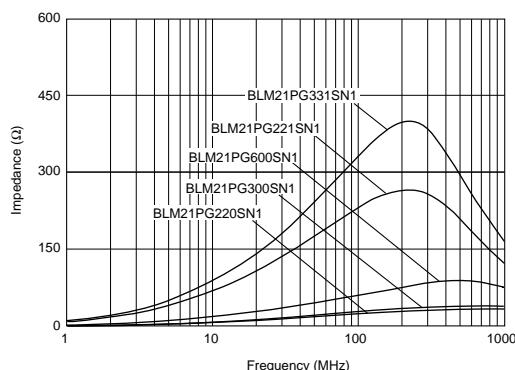

BLM18PG600SN1


BLM18PG121SN1

BLM18PG181SN1

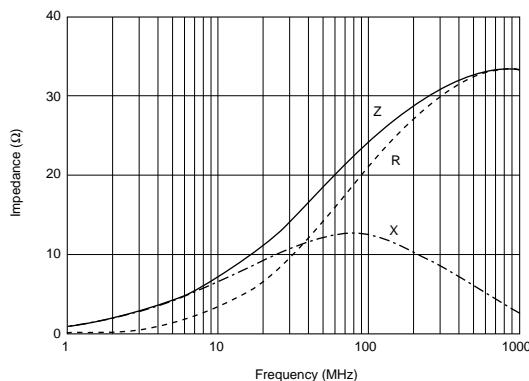
BLM21P Series (0805 Size)

BLM21P Series

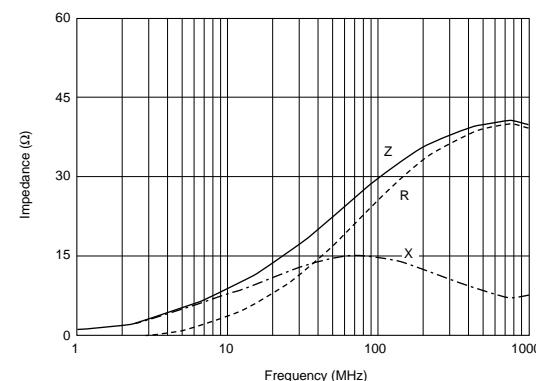

Part Number	Impedance (at 100MHz, 20 degree C) (ohm)	Rated Current (mA)	DC Resistance (max.) (ohm)	Operating Temperature Range (°C)
BLM21PG220SN1	22 (Typ.)	6000	0.01	-55 to 125
BLM21PG300SN1	30 (Typ.)	3000	0.015	-55 to 125
BLM21PG600SN1	60 (Typ.)	3000	0.025	-55 to 125
BLM21PG221SN1	220 (Typ.)	2000	0.050	-55 to 125
BLM21PG331SN1	330 (Typ.)	1500	0.09	-55 to 125

When the BLM_P series is for Large-current used in operating temperatures exceeding +85 °C, derating of current is necessary.

Please apply the derating curve shown in Notice (Rating) of BLM_P series according to the operating temperature.


■ Impedance-Frequency (Typical)

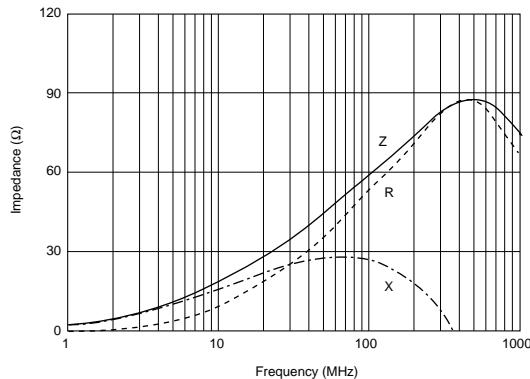
BLM21P Series



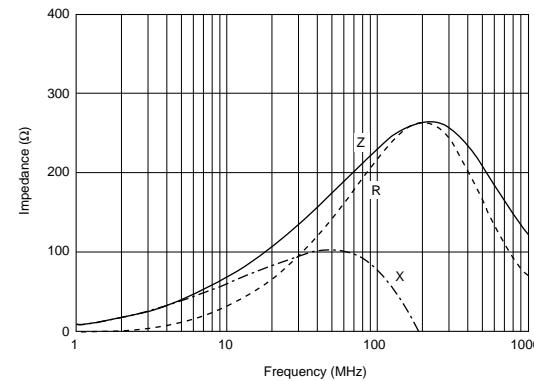
■ Impedance-Frequency Characteristics

BLM21PG220SN1

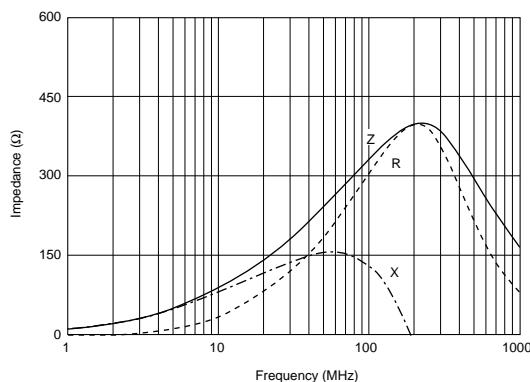
BLM21PG300SN1

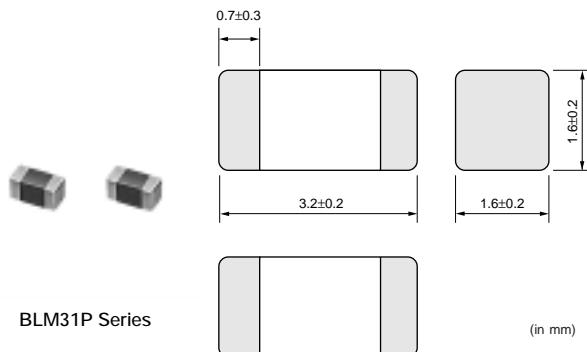


Continued on the following page.


Continued from the preceding page.

■ Impedance-Frequency Characteristics


BLM21PG600SN1

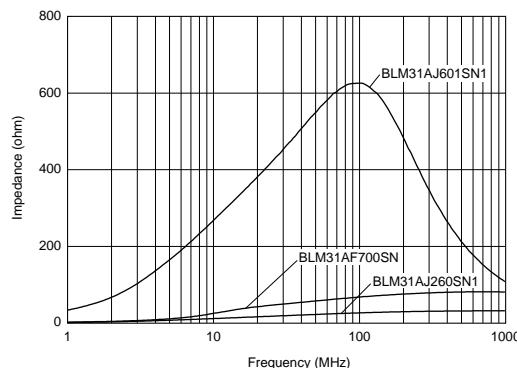

BLM21PG221SN1

BLM21PG331SN1

BLM31P Series (1206 Size)

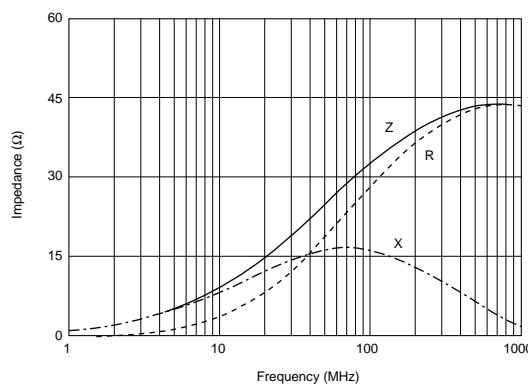
BLM31P Series

(in mm)

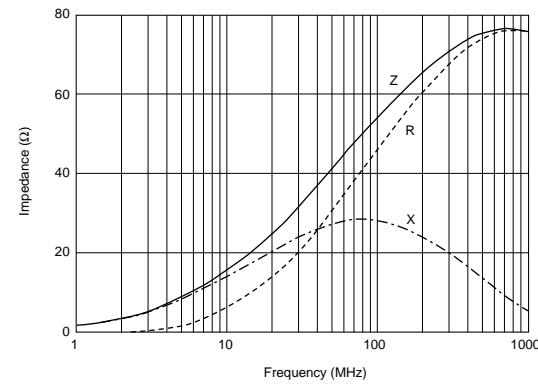

Part Number	Impedance (at 100MHz, 20 degree C) (ohm)	Rated Current (mA)	DC Resistance (max.) (ohm)	Operating Temperature Range (°C)
BLM31PG330SN1	33 (Typ.)	6000	0.01	-55 to 125
BLM31PG500SN1	50 (Typ.)	3000	0.025	-55 to 125
BLM31PG121SN1	120 (Typ.)	3000	0.025	-55 to 125
BLM31PG391SN1	390 (Typ.)	2000	0.05	-55 to 125
BLM31PG601SN1	600 (Typ.)	1500	0.09	-55 to 125

When the BLM_P series is for Large-current used in operating temperatures exceeding +85 °C, derating of current is necessary.

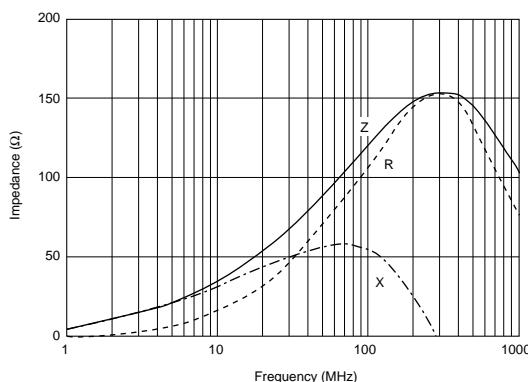
Please apply the derating curve shown in Notice (Rating) of BLM_P series according to the operating temperature.

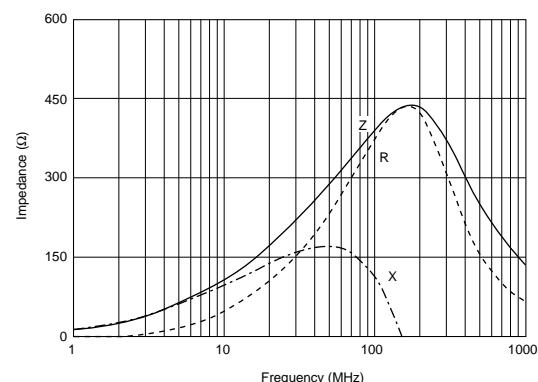

■ Impedance-Frequency (Typical)

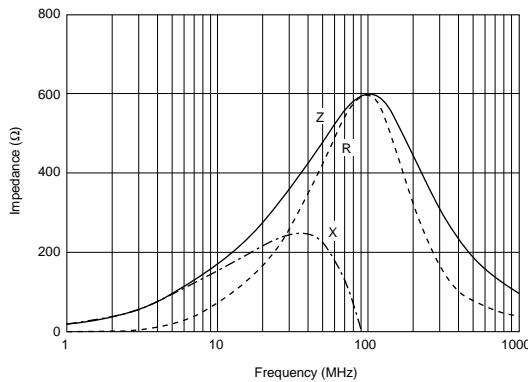
BLM31P Series

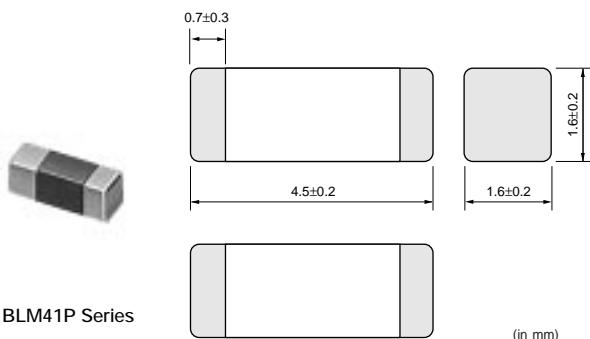


■ Impedance-Frequency Characteristics


BLM31PG330SN1

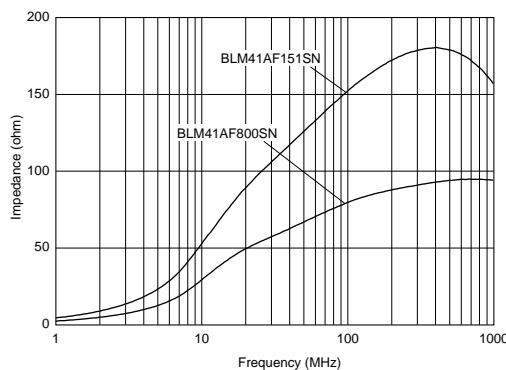

BLM31PG500SN1


BLM31PG121SN1

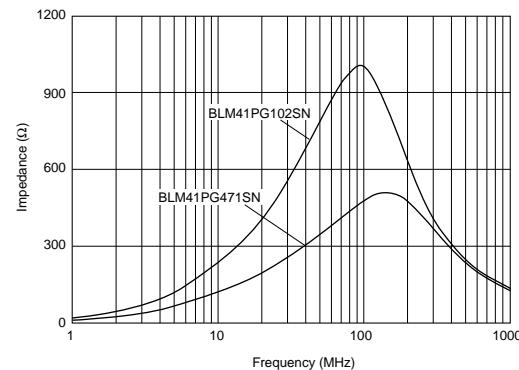

BLM31PG391SN1

BLM31PG601SN1

BLM41P Series (1806 Size)

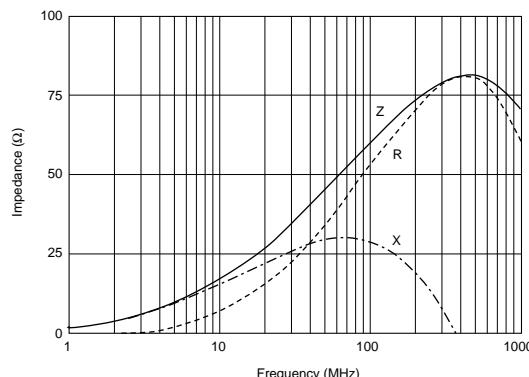


Part Number	Impedance (at 100MHz, 20 degree C) (ohm)	Rated Current (mA)	DC Resistance (max.) (ohm)	Operating Temperature Range (°C)
BLM41PG600SN1	60 (Typ.)	6000	0.01	-55 to 125
BLM41PG750SN1	75 (Typ.)	3000	0.025	-55 to 125
BLM41PF800SN1	80 (Typ.)	1000	0.10	-55 to 125
BLM41PG181SN1	180 (Typ.)	3000	0.025	-55 to 125
BLM41PG471SN1	470 (Typ.)	2000	0.05	-55 to 125
BLM41PG102SN1	1000 (Typ.)	1500	0.09	-55 to 125

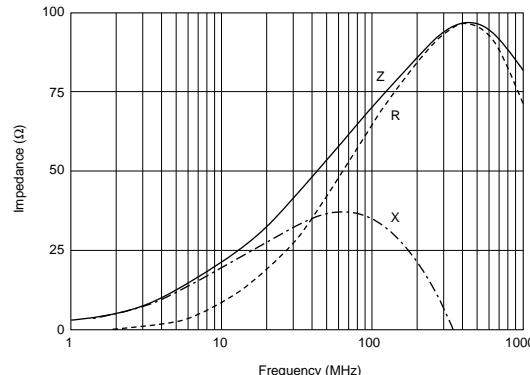

When the BLM_P series is for Large-current used in operating temperatures exceeding +85 °C, derating of current is necessary.
Please apply the derating curve shown in Notice (Rating) of BLM_P series according to the operating temperature.

■ Impedance-Frequency (Typical)

BLM41P Series (80-180ohm)

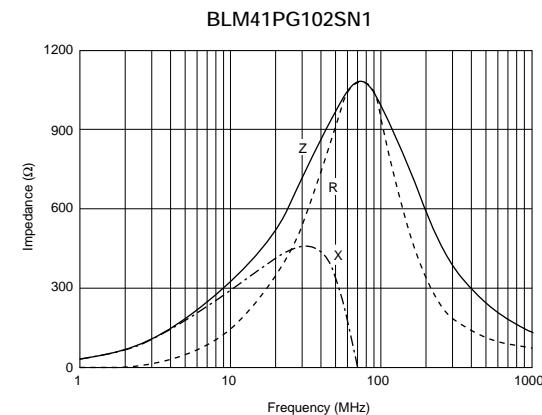
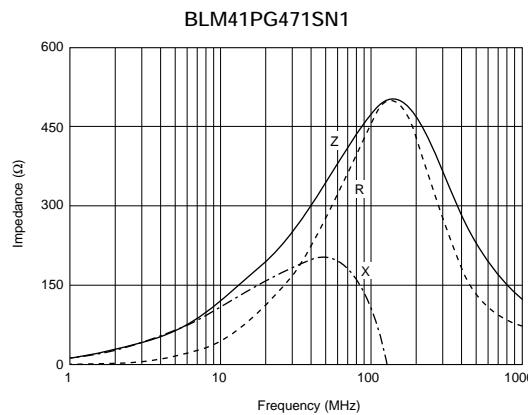
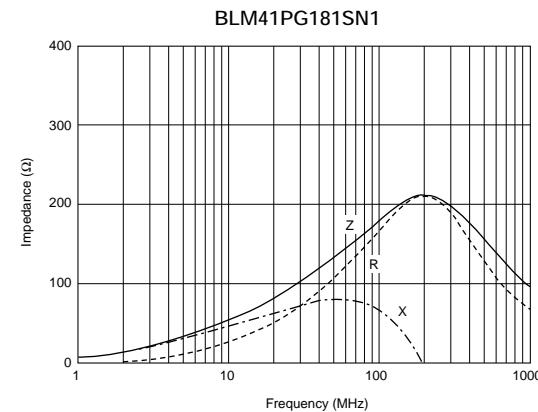
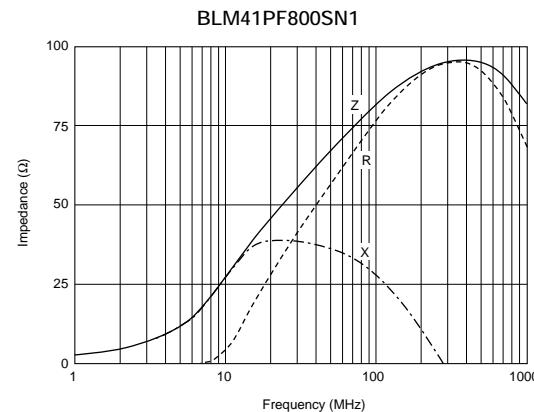


BLM41P Series (470-1000ohm)



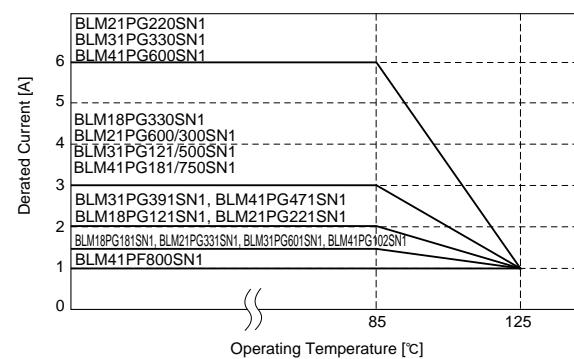
■ Impedance-Frequency Characteristics

BLM41PG600SN1





BLM41PG750SN1

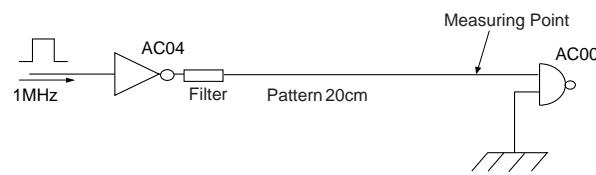
Continued on the following page.

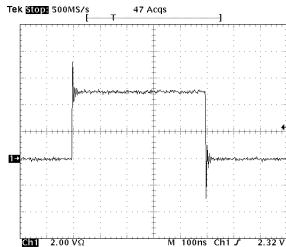
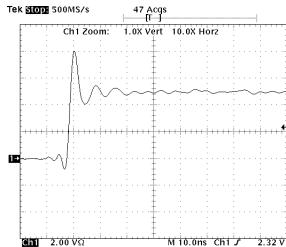
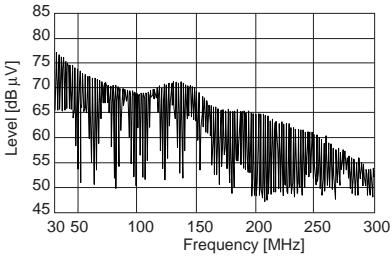
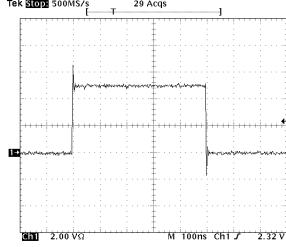
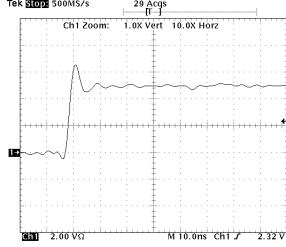
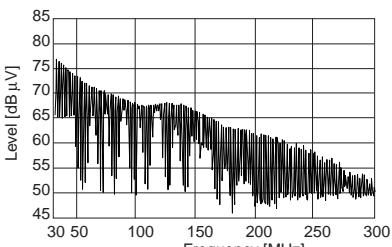
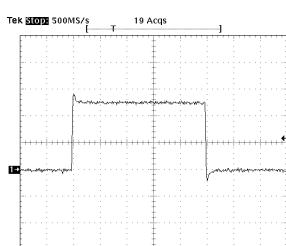
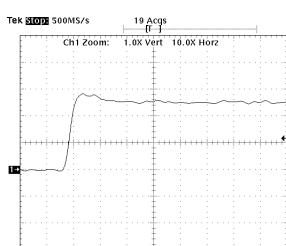
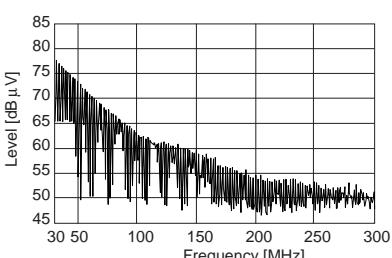
Continued from the preceding page.


■ Impedance-Frequency Characteristics

■ Notice (Rating)

When the BLM□□P series is for Large-current used in operating temperatures exceeding + 85°C, derating of current is necessary. Please apply the derating curve shown below according to the operating temperature.


[Derating]

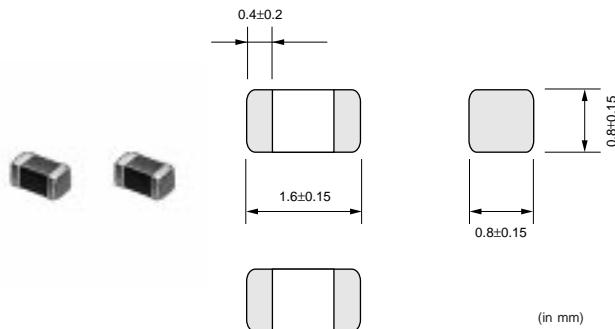










Noise Suppression Effect of BLM_R Series

■ Waveform Distortion Suppressing Performance of BLM□□R Series

[Measuring Circuits]

Type of Filter	EMI Suppression Effect / Description		
Initial (No filter)	<p>Signal waveform (100nsec/div, 2V/div)</p> <p>Expand (10nsec/div, 2V/div)</p> <p>Spectrum</p>		
Resister (47Ω) is used	<p>Signal waveform (100nsec/div, 2V/div)</p> <p>Expand (10nsec/div, 2V/div)</p> <p>Spectrum</p>	<p>Ringing is caused on the signal waveform Such ringing contains several hundred MHz harmonic components and generates noise.</p>	
BLM18RK221SN1 (220Ω at 100MHz) is used	<p>Signal waveform (100nsec/div, 2V/div)</p> <p>Expand (10nsec/div, 2V/div)</p> <p>Spectrum</p>	<p>Comparing initial waveform, ringing is suppressed a little. However there still remains high level waveform distortion.</p> <p>BLM18R has excellent performance for noise suppression and waveform distortion suppression. BLM18R suppresses drastically not only spectrum level in more than 100MHz range but waveform distortion.</p>	


On-Board Type (DC) EMI Suppression Filters (EMIFIL®)

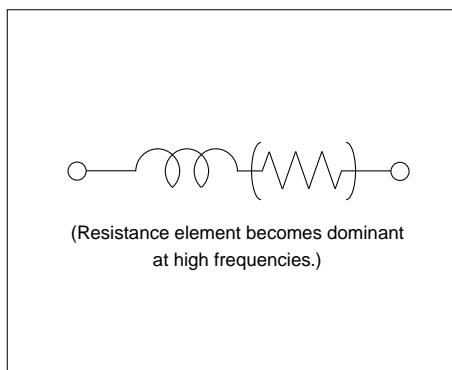
muRata

GHz Noise Suppression Chip Ferrite Beads BLM18H Series

The chip ferrite bead BLM18H series comprises ferrite bead in the shape of a chip. This ferrite bead generates a high impedance which at high frequencies mainly consists of a resistance element. The BLM18H series is effective in circuits without stable ground lines because the BLM18H series does not need a connection to ground.

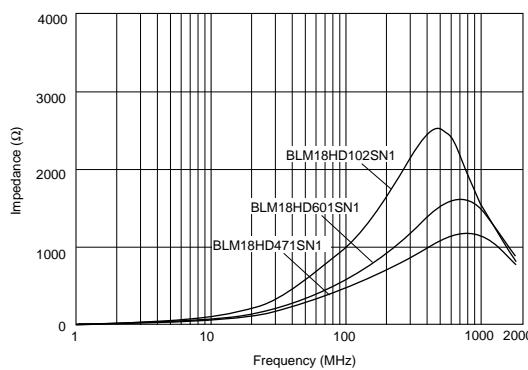
The BLM18H series has a modified internal electrode structure, that minimizes stray capacitance and increases the effective frequency range.

■ Features (BLM18HB/HD/HG Series)

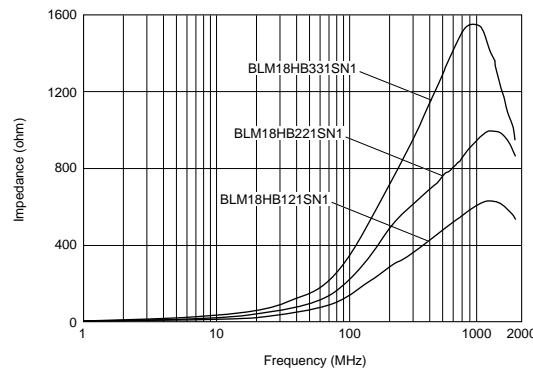

1. The BLM18HG, BLM18HD series is similar to BLM_A/B series at frequency below 100MHz, however at 1GHz the impedance is approx. 3 times larger.
2. The BLM18HG is intended for standard signal lines as this series provides significant impedance across a broad frequency range. The BLM18HB/HD provides a sharper roll-off after the cut off frequency, therefore this series is ideal for high speed signal lines.
3. The magnetic shielded structure minimizes crosstalk.

■ Features (BLM18HK Series)

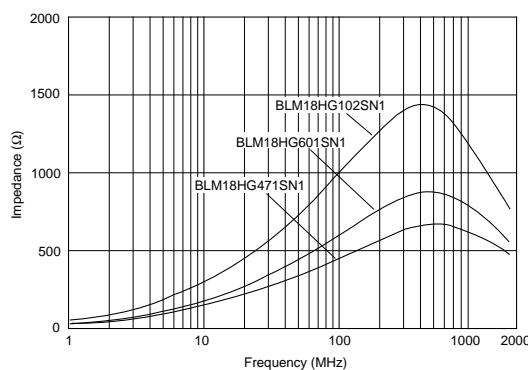
1. The BLM18HK series is realized high impedance at 1GHz and suitable for noise suppression of digital interface from 500MHz to GHz range.
2. The BLM18HK series is effective in suppressing the ringing because resistance especially grows in the lower frequency.
3. The magnetic shielded structure minimizes cross talk.

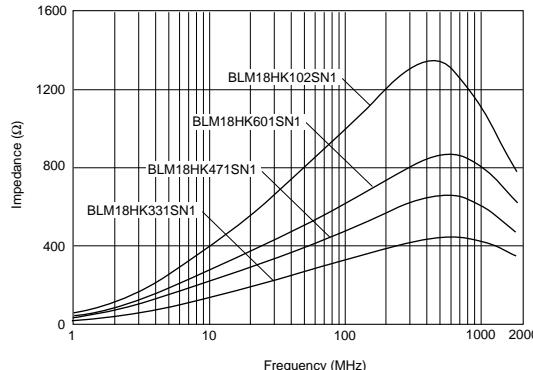

Part Number	Impedance (at 100MHz, 20 degree C) (ohm)	Impedance (at 1GHz, 25 degree C) (ohm)	Rated Current (mA)	DC Resistance (max.) (ohm)	Operating Temperature Range (°C)
BLM18HD471SN1	470 ±25%	1000 (Typ.)	100	1.20	-55 to 125
BLM18HD601SN1	600 ±25%	1200 (Typ.)	100	1.50	-55 to 125
BLM18HD102SN1	1000 ±25%	1700 (Typ.)	50	1.80	-55 to 125
BLM18HB121SN1	120 ±25%	500 ±50%	200	0.50	-55 to 125
BLM18HB221SN1	220 ±25%	1100 ±50%	100	0.80	-55 to 125
BLM18HB331SN1	330 ±25%	1600 ±50%	50	1.20	-55 to 125
BLM18HG471SN1	470 ±25%	600 (Typ.)	200	0.85	-55 to 125
BLM18HG601SN1	600 ±25%	700 (Typ.)	200	1.00	-55 to 125
BLM18HG102SN1	1000 ±25%	1000 (Typ.)	100	1.60	-55 to 125
BLM18HK331SN1	330 ±25%	400 ±40%	200	0.50	-55 to 125
BLM18HK471SN1	470 ±25%	600 ±40%	200	0.70	-55 to 125
BLM18HK601SN1	600 ±25%	700 ±40%	100	0.90	-55 to 125
BLM18HK102SN1	1000 ±25%	1200 ±40%	50	1.50	-55 to 125

■ Equivalent Circuit

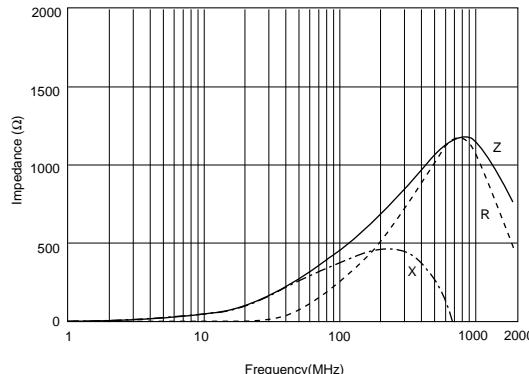


■ Impedance-Frequency (Typical)

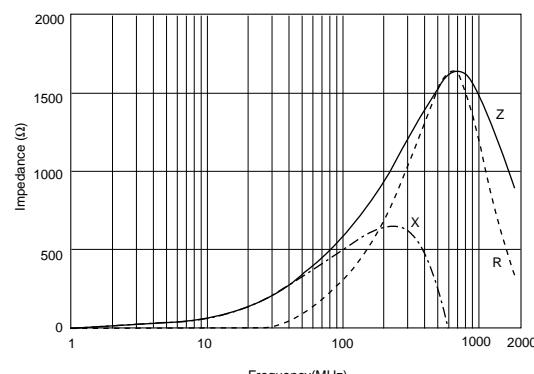

BLM18HD Series


BLM18HB Series

BLM18HG Series



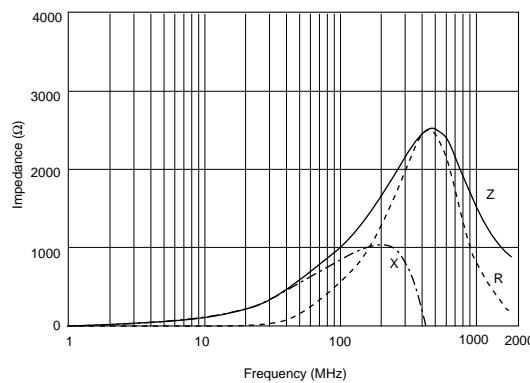
BLM18HK Series



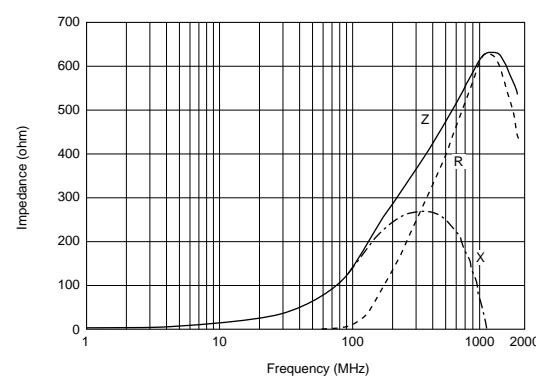
■ Impedance-Frequency Characteristics

BLM18HD471SN1

BLM18HD601SN1

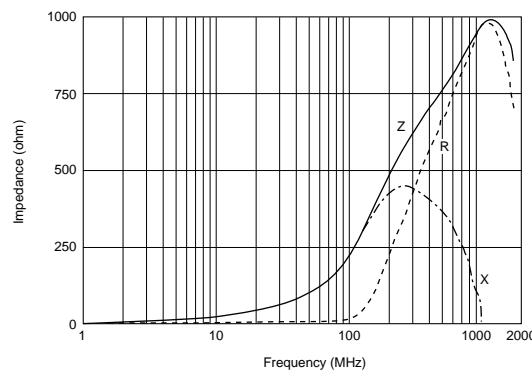


Continued on the following page.

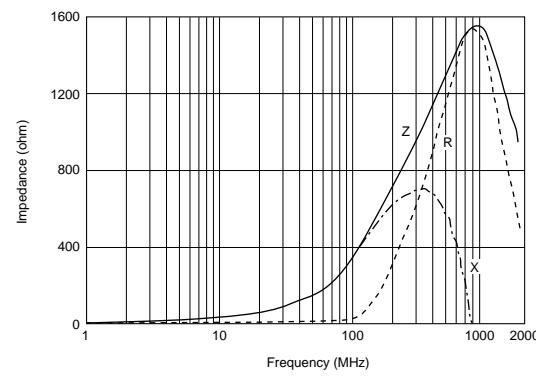

Continued from the preceding page.

■ Impedance-Frequency Characteristics

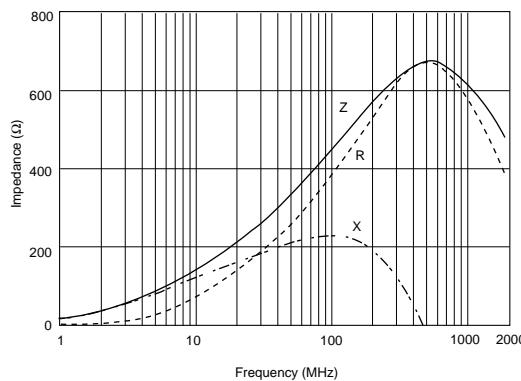
BLM18HD102SN1

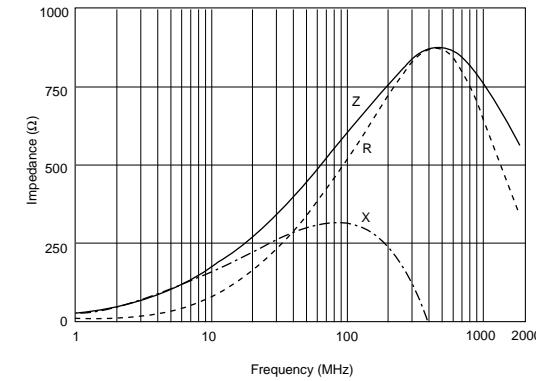


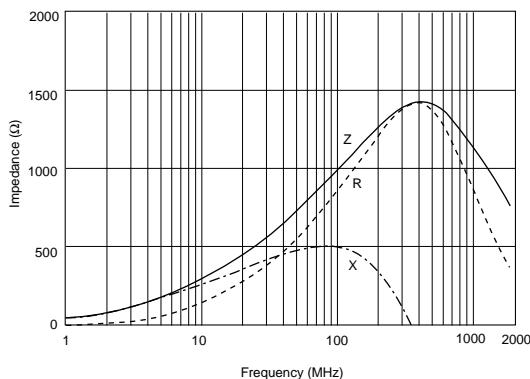
BLM18HB121SN1

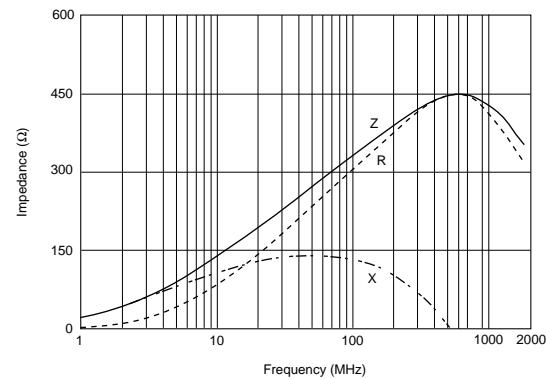


2


BLM18HB221SN1

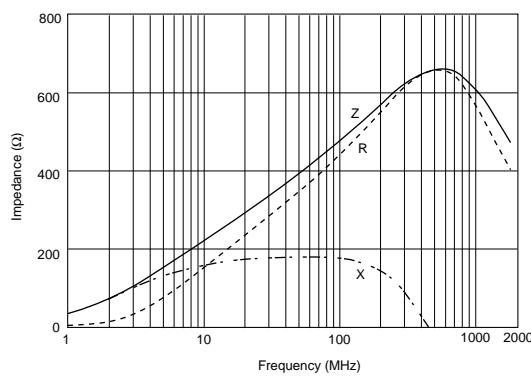

BLM18HB331SN1


BLM18HG471SN1

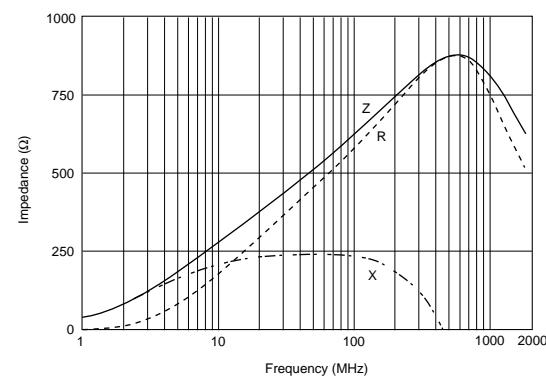

BLM18HG601SN1

BLM18HG102SN1

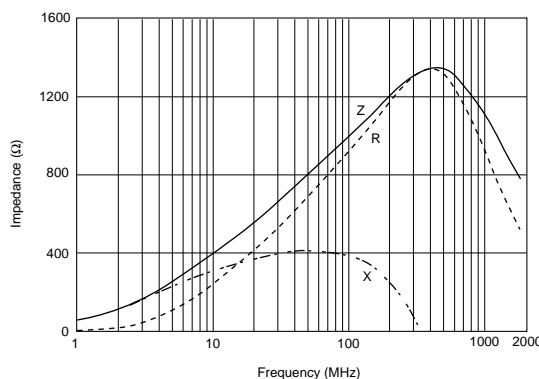
BLM18HK331SN1



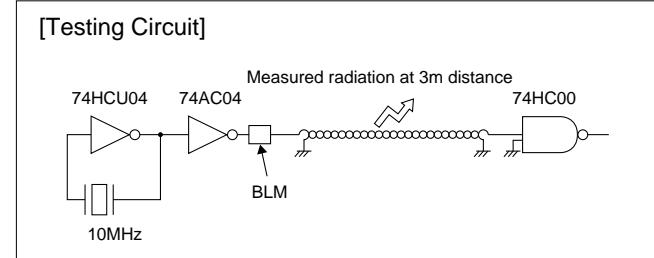
Continued on the following page.

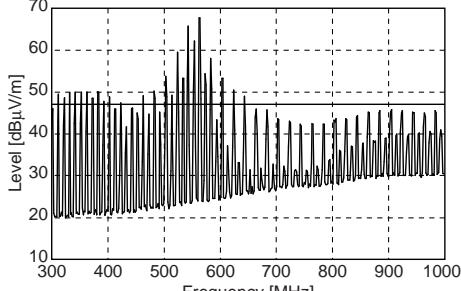
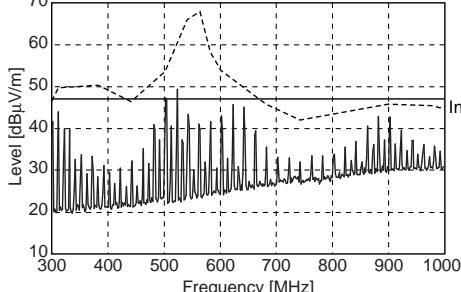
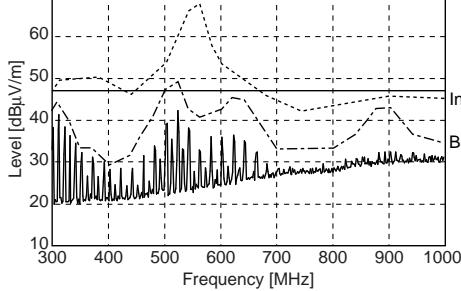

Continued from the preceding page.

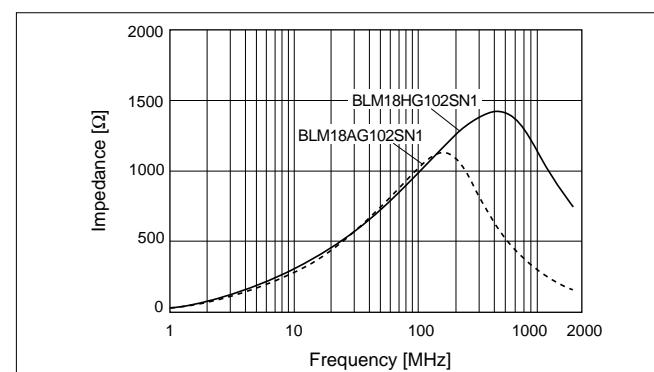
■ Impedance-Frequency Characteristics


BLM18HK471SN1

BLM18HK601SN1






BLM18HK102SN1

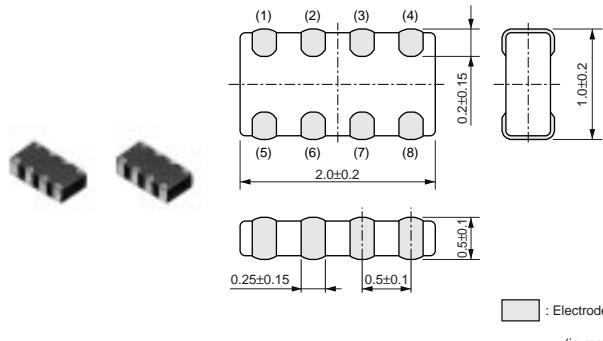

Noise Suppression Effect of BLM18H Series

■ Noise Suppression in UHF Range

Type of Filter	EMI Suppression Effect	Description
Initial (No filter)		
Conventional Type BLM18AG102SN1 (1000Ω at 100MHz)		Current BLM are effective in suppressing noise in the range between 300MHz and 700MHz.
for GHz Noise Suppression BLM18HG102SN1 (1000Ω at 100MHz)		In addition to the effectiveness of current BLM, BLM18HG suppresses noise in the range beyond 700MHz.

Comparison between BLM18HG102SN1 and
BLM18AG102SN1 (CURRENT ITEM)

On-Board Type (DC) EMI Suppression Filters (EMIFIL®)


muRata

Chip Ferrite Beads Arrays BLA2AA/BLA2AB/BLA31A/BLA31B Series

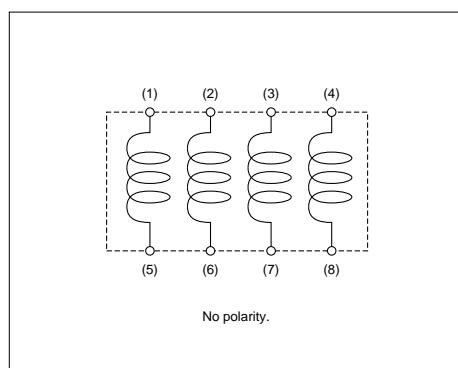
3

BLA2AA/BLA2AB Series

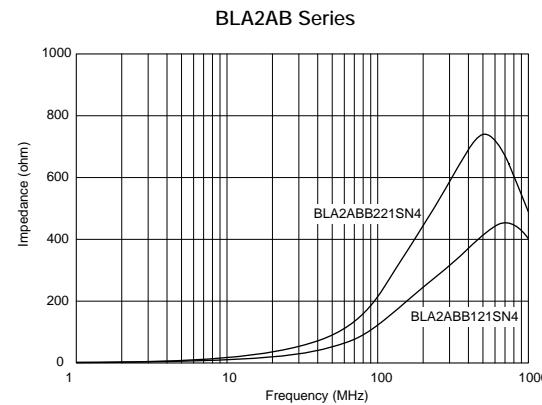
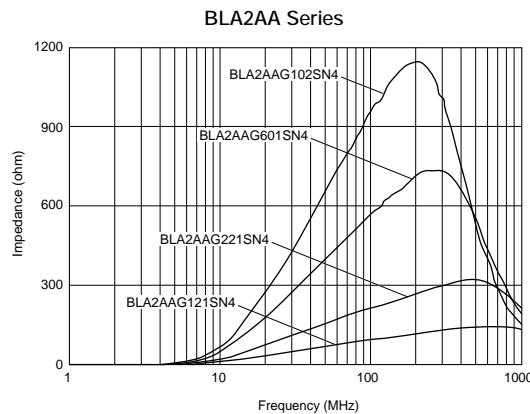
The smaller electronic equipment become, the more high performance EMI filters which enables high density mounting requires. BLA2AA/2AB series consists of 4 circuits of ferrite bead.

■ Features

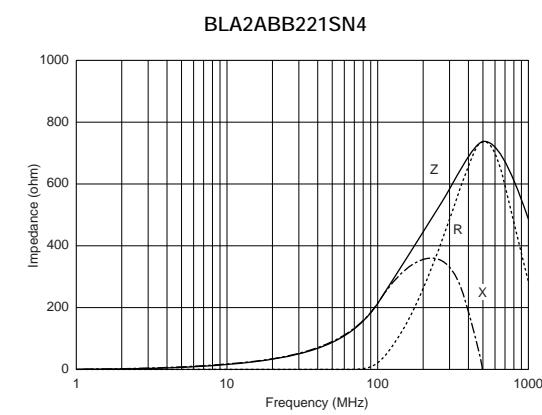
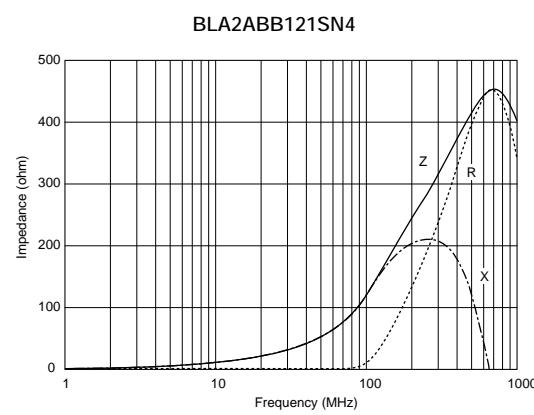
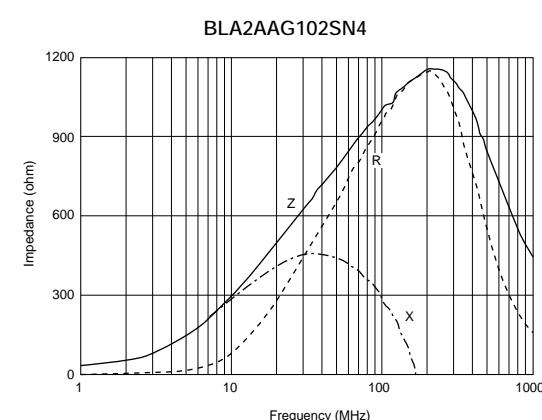
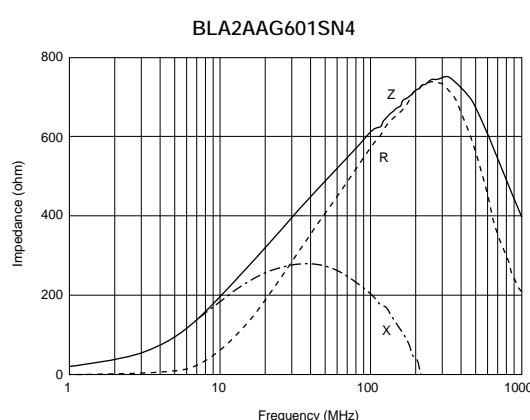
1. BLA2AA/2AB series has 4 circuits in 2.0x1.0mm body with 0.8mm pitch.
2. Provides attenuation across a broad frequency range. Two types of impedance characteristics are available, one is for general signal line and the other is for high speed signal line.
3. Original inner electrode structure enables extra low crosstalk.
4. The nickel barrier structure of the external electrodes provides excellent solder heat resistance.

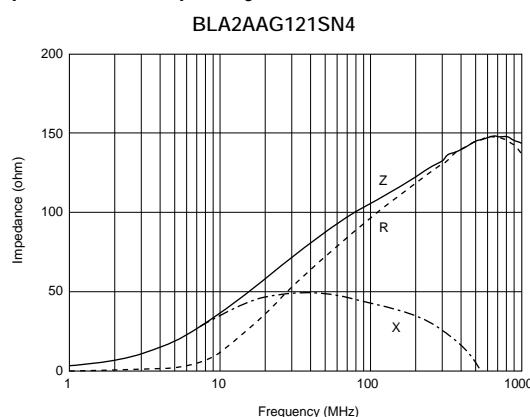

■ Applications

Notebook size PC, PDA and other compact size digital equipment



Part Number	Impedance (at 100MHz, 20 degree C) (ohm)	Rated Current (mA)	DC Resistance (max.) (ohm)	Operating Temperature Range (°C)
BLA2AAG121SN4	120 ±25%	100	0.50	-55 to 125
BLA2AAG221SN4	220 ±25%	50	0.70	-55 to 125
BLA2AAG601SN4	600 ±25%	50	1.10	-55 to 125
BLA2AAG102SN4	1000 ±25%	50	1.30	-55 to 125
BLA2ABB121SN4	120 ±25%	50	0.60	-55 to 125
BLA2ABB221SN4	220 ±25%	50	0.90	-55 to 125

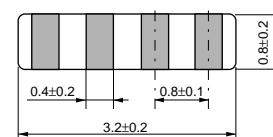
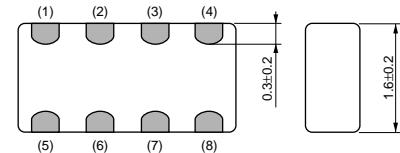
Number of Circuit : 4


■ Equivalent Circuit

■ Impedance-Frequency (Typical)

■ Impedance-Frequency Characteristics

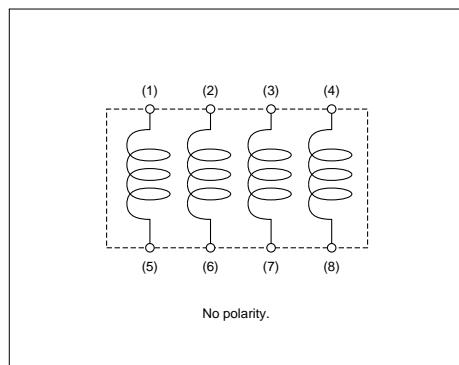


BLA31A/BLA31B Series

The miniaturization of electronic equipment requires high performance EMI filters which enables high density mounting. BLA31A/B series consists of 4 circuit of ferrite bead.

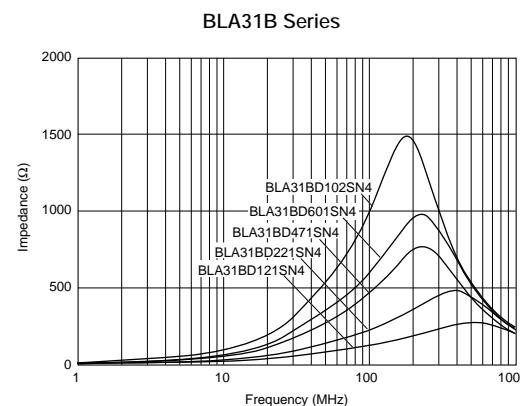
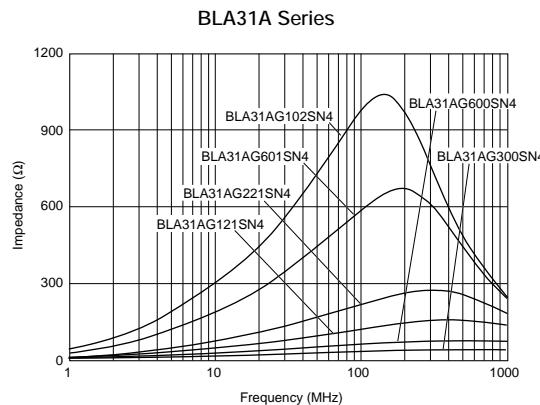
BLA31A/B is suitable for EMI suppression in smaller digital equipment.

■ Features

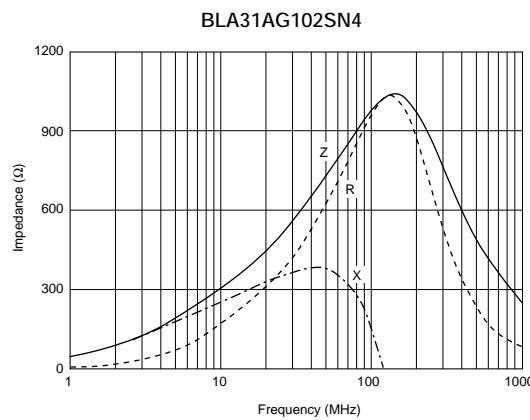
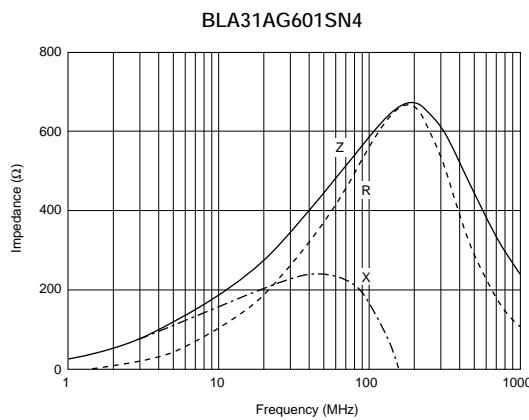
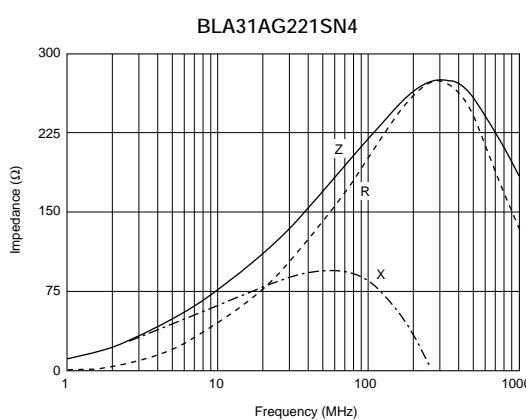
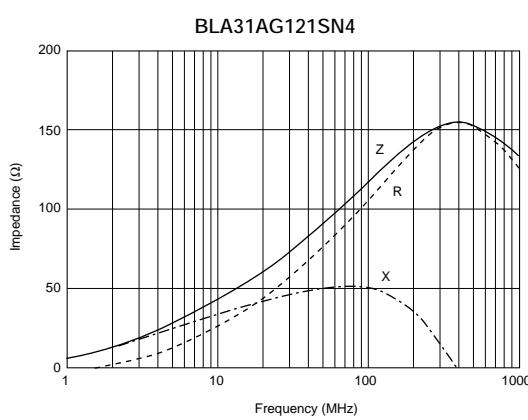
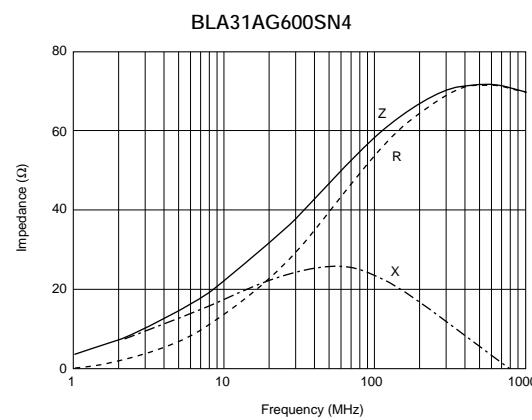
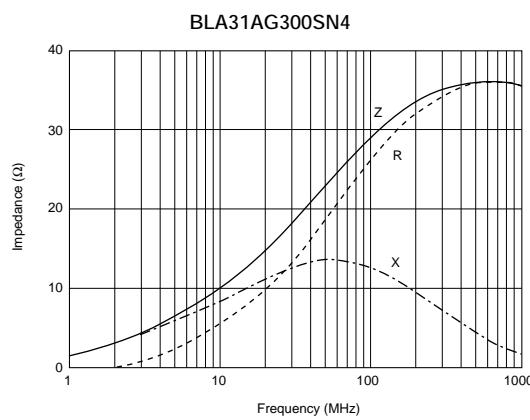
1. BLA31A/B have 4 circuits in 3.2x1.6mm body with 0.8mm pitch.
2. Provides attenuation across a broad frequency range. Two types of impedance are available which meets general signal line and high speed signal line.
3. Original inner electrode structure enables extra low crosstalk.
4. The nickel barrier structure of the external electrodes provides excellent solder heat resistance. Both flow and reflow soldering methods can be employed.



(in mm)

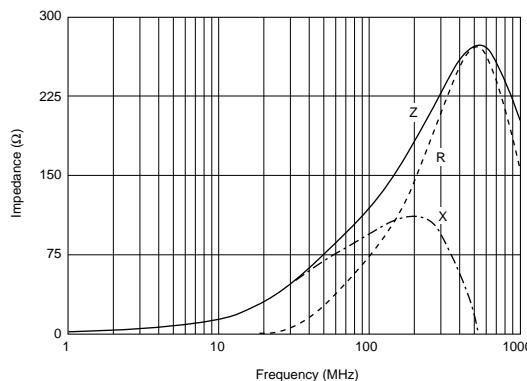


Part Number	Impedance (at 100MHz, 20 degree C) (ohm)	Rated Current (mA)	DC Resistance (max.) (ohm)	Operating Temperature Range (°C)
BLA31AG300SN4	$30 \pm 25\%$	200	0.10	-55 to 125
BLA31AG600SN4	$60 \pm 25\%$	200	0.15	-55 to 125
BLA31AG121SN4	$120 \pm 25\%$	150	0.20	-55 to 125
BLA31AG221SN4	$220 \pm 25\%$	150	0.25	-55 to 125
BLA31AG601SN4	$600 \pm 25\%$	100	0.35	-55 to 125
BLA31AG102SN4	$1000 \pm 25\%$	50	0.45	-55 to 125
BLA31BD121SN4	$120 \pm 25\%$	150	0.30	-55 to 125
BLA31BD221SN4	$220 \pm 25\%$	150	0.35	-55 to 125
BLA31BD471SN4	$470 \pm 25\%$	100	0.40	-55 to 125
BLA31BD601SN4	$600 \pm 25\%$	100	0.45	-55 to 125
BLA31BD102SN4	$1000 \pm 25\%$	50	0.55	-55 to 125

Number of Circuit : 4

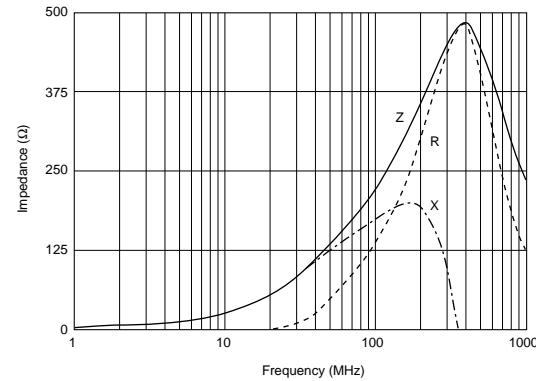






■ Equivalent Circuit

■ Impedance-Frequency (Typical)

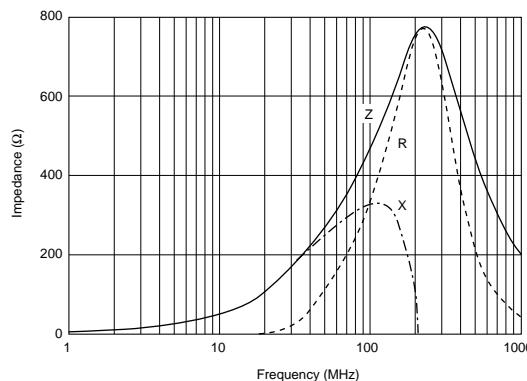
■ Impedance-Frequency Characteristics

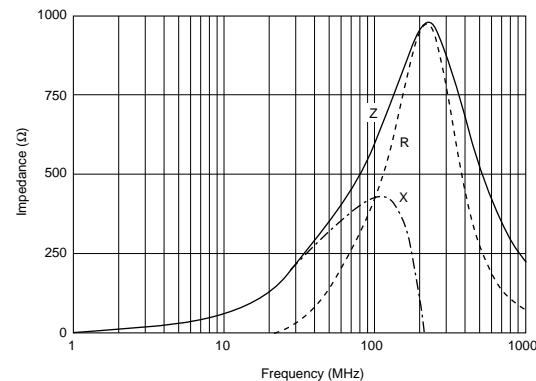


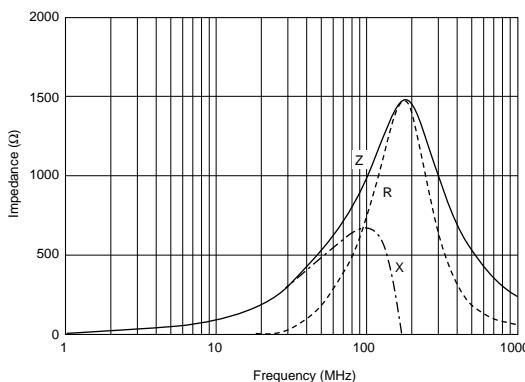
Continued on the following page.


Continued from the preceding page.

■ Impedance-Frequency Characteristics


BLA31BD121SN4


BLA31BD221SN4

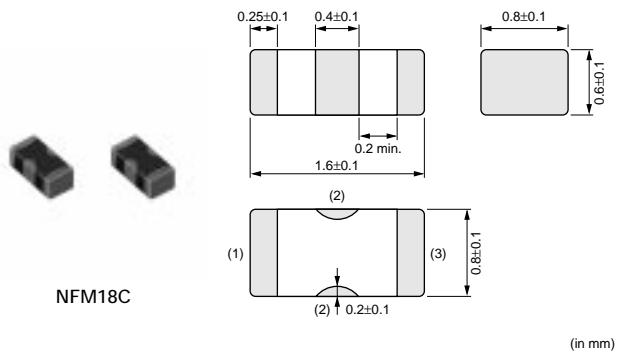

BLA31BD471SN4

BLA31BD601SN4

BLA31BD102SN4

On-Board Type (DC) EMI Suppression Filters (EMIFIL®)

muRata

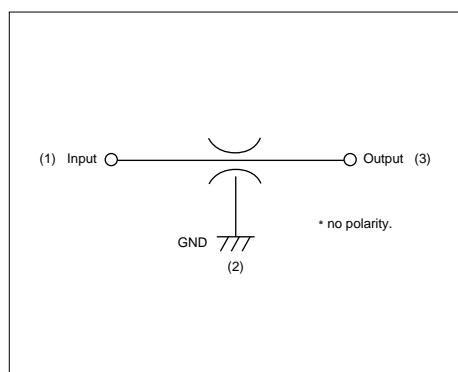

Chip EMIFIL® Capacitor Type NFM18C/NFM21C/NFM3DC/NFM41C Series

NFM18C Series

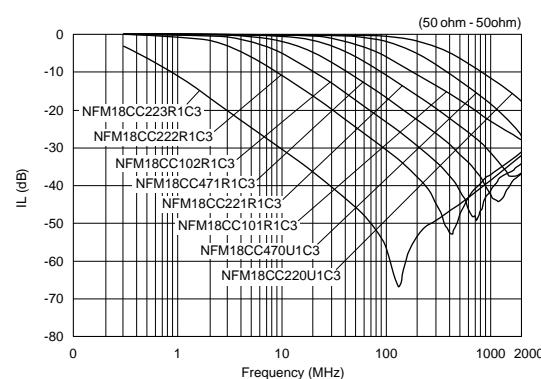
The NFM18CC series is the EMI suppression filter for signal lines which have 3-terminal structure in 1.6x0.8mm by Murata's multilayer technology.

■ Features

1. Ultra small size in 1.6x8x0.6mm enable high density mounting.
2. 3-terminal structure with low residual inductance (ESL)* characteristics achieved large insertion loss characteristics even in high frequency area.
* Not exceeding one-tenth of Monolithic ceramic capacitors. (2-terminal)
3. The NFM18CC series cover capacitance range from 22pF up to 22000pF.


(in mm)

■ Applications


1. EMI suppression of circuit for Insertion loss in quantity.
2. Noise suppression up to GHz.

Part Number	Capacitance (pF)	Rated Voltage (Vdc)	Rated Current (mA)	Insulation Resistance (M ohm)	Operating Temperature Range (°C)
NFM18CC220U1C3	22 +20%, -20%	16	300	1000 min.	-55 to 125
NFM18CC470U1C3	47 +20%, -20%	16	300	1000 min.	-55 to 125
NFM18CC101R1C3	100 +20%, -20%	16	300	1000 min.	-55 to 125
NFM18CC221R1C3	220 +20%, -20%	16	300	1000 min.	-55 to 125
NFM18CC471R1C3	470 +20%, -20%	16	300	1000 min.	-55 to 125
NFM18CC102R1C3	1000 +20%, -20%	16	300	1000 min.	-55 to 125
NFM18CC222R1C3	2200 +20%, -20%	16	300	1000 min.	-55 to 125
NFM18CC223R1C3	22000 +20%, -20%	16	1000	1000 min.	-55 to 125

■ Equivalent Circuit

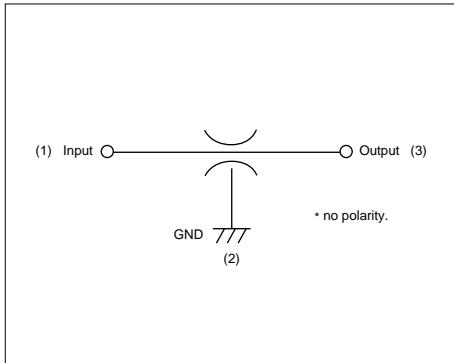
■ Insertion Loss Characteristics (Typical)

NFM21C Series

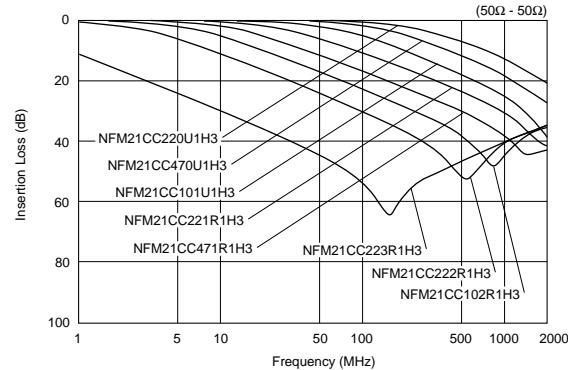
The chip "EMIFIL" NFM21C series is a chip type 3-terminal EMI suppression filter. It can reduce residual inductance to an extremely low level making it excellent for noise suppression at high frequencies.

4

■ Features


1. Small and low profile of $2.0 \times 1.25 \times 0.85$ mm (NFM21C) enables high density mounting.
2. 3 terminal structure enables high performance in high frequency range.
3. Use original electrode structure which realize excellent solderability.
4. An electrostatic capacitance range of 22 to 22000pF enables suppression of noise at specific frequencies.

■ Applications


1. PCs and peripherals which emit high amount of noise.
2. Compact size equipment such as PDA, PC card and mobile telecommunication equipments.
3. Severe EMI suppression and high impedance circuits such as digital circuits.

Part Number	Capacitance (pF)	Rated Voltage (Vdc)	Rated Current (mA)	Insulation Resistance (M ohm)	Operating Temperature Range (°C)
NFM21CC220U1H3	22 +20%,-20%	50	300	1000 min.	-55 to 125
NFM21CC470U1H3	47 +20%,-20%	50	300	1000 min.	-55 to 125
NFM21CC101U1H3	100 +20%,-20%	50	300	1000 min.	-55 to 125
NFM21CC221R1H3	220 +20%,-20%	50	300	1000 min.	-55 to 125
NFM21CC471R1H3	470 +20%,-20%	50	300	1000 min.	-55 to 125
NFM21CC102R1H3	1000 +20%,-20%	50	300	1000 min.	-55 to 125
NFM21CC222R1H3	2200 +20%,-20%	50	300	1000 min.	-55 to 125
NFM21CC223R1H3	22000 +20%,-20%	50	2000	1000 min.	-55 to 125

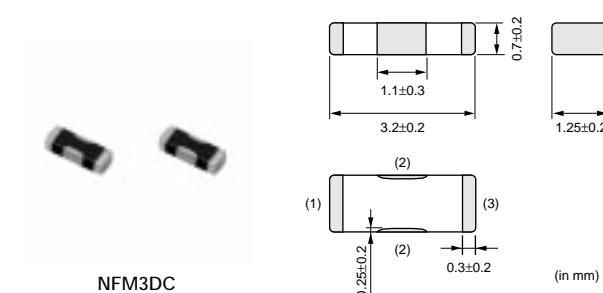
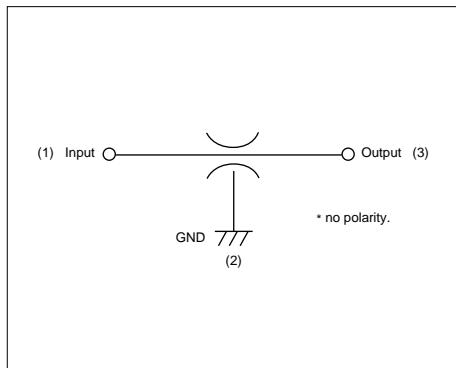
■ Equivalent Circuit

■ Insertion Loss Characteristics (Typical)

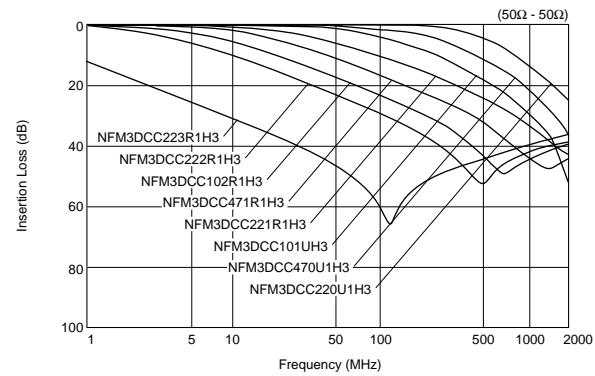
NFM3DC Series

The chip "EMIFIL" NFM3DC series is a chip type 3-terminal EMI suppression filter. It can reduce residual inductance to an extremely low level making it excellent for noise suppression at high frequencies.

■ Features



An electrostatic capacitance range of 22 to 22,000pF enables suppression of noise at specific frequencies.

■ Applications


High Noise radiation and high impedance circuits such as digital circuits.

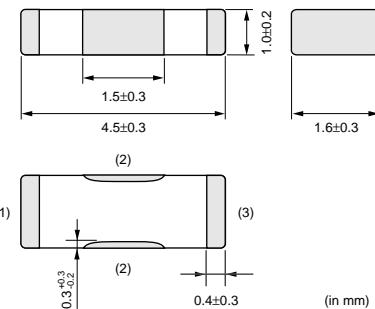
Part Number	Capacitance (pF)	Rated Voltage (Vdc)	Rated Current (mA)	Insulation Resistance (M ohm)	Operating Temperature Range (°C)
NFM3DCC220U1H3	22 +50%,-20%	50	300	1000 min.	-55 to 125
NFM3DCC470U1H3	47 +50%,-20%	50	300	1000 min.	-55 to 125
NFM3DCC101U1H3	100 +50%,-20%	50	300	1000 min.	-55 to 125
NFM3DCC221R1H3	220 +50%,-20%	50	300	1000 min.	-55 to 125
NFM3DCC471R1H3	470 +50%,-20%	50	300	1000 min.	-55 to 125
NFM3DCC102R1H3	1000 +50%,-20%	50	300	1000 min.	-55 to 125
NFM3DCC222R1H3	2200 +50%,-20%	50	300	1000 min.	-55 to 125
NFM3DCC223R1H3	22000 +50%,-20%	50	300	1000 min.	-55 to 125

■ Equivalent Circuit

■ Insertion Loss Characteristics (Typical)

NFM41C Series

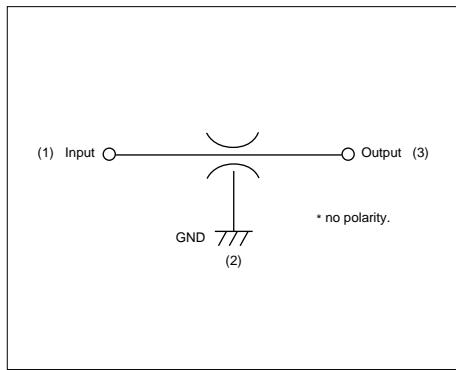
The chip "EMIFIL" NFM41C series is a chip type 3-terminal EMI suppression filter. It can reduce residual inductance to an extremely low level making it excellent for noise suppression at high frequencies.

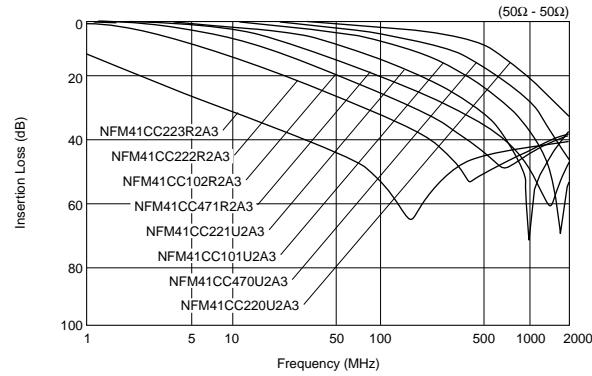

4

■ Features

An electrostatic capacitance range of 22 to 22,000pF enables suppression of noise at specific frequencies.

■ Applications

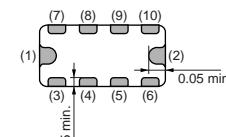
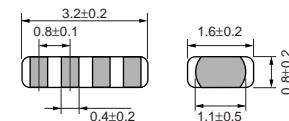

High Noise radiation and high impedance circuits such as digital circuits.


NFM41C

Part Number	Capacitance (pF)	Rated Voltage (Vdc)	Rated Current (mA)	Insulation Resistance (M ohm)	Operating Temperature Range (°C)
NFM41CC220U2A3	22 +50%,-20%	100	300	10000 min.	-55 to 125
NFM41CC470U2A3	47 +50%,-20%	100	300	10000 min.	-55 to 125
NFM41CC101U2A3	100 +50%,-20%	100	300	10000 min.	-55 to 125
NFM41CC221U2A3	220 +50%,-20%	100	300	10000 min.	-55 to 125
NFM41CC471R2A3	470 +50%,-20%	100	300	10000 min.	-55 to 125
NFM41CC102R2A3	1000 +50%,-20%	100	300	10000 min.	-55 to 125
NFM41CC222R2A3	2200 +50%,-20%	100	300	10000 min.	-55 to 125
NFM41CC223R2A3	22000 +50%,-20%	100	300	10000 min.	-55 to 125

■ Equivalent Circuit

■ Insertion Loss Characteristics (Typical)

On-Board Type (DC) EMI Suppression Filters (EMIFIL®)

muRata

Chip EMIFIL® Capacitor Array Type NFA31C Series

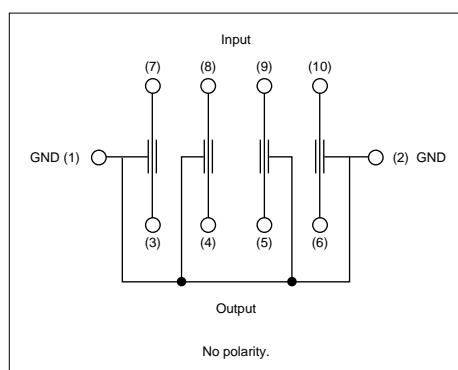
The NFA31C series is chip EMI suppression filter for surface mount applications by using Murata's ceramic processing technology and filter design technology. The series is well suited for EMI suppression in digital I/O lines of varied electronic equipment such as notebook size PCs.

(in mm)

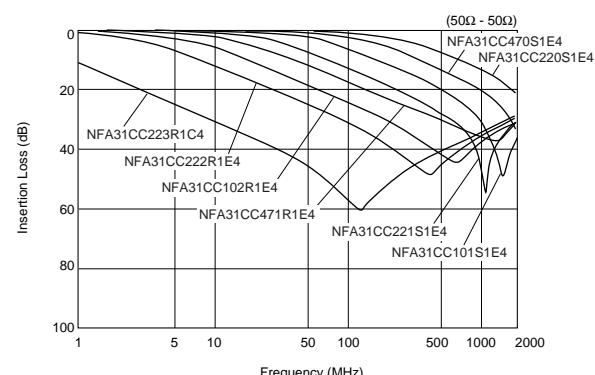
5

■ Features

1. High density mounting can be realized because of 4 circuits in one package with 0.8mm pitch.
2. Suitable for high frequency noise suppression because of low residual inductance of 3-terminals structure.
3. Excellent EMI suppression can be realized because of 2-terminal simple GNDs for 4 circuits.
4. 20-22000pF lineups can be used depending on noise frequency.


■ Applications

1. Personal computers and peripherals
2. Telephones, PPCs, Communication equipments
3. Digital TVs, VCRs


Part Number	Capacitance (pF)	Rated Voltage (Vdc)	Rated Current (mA)	Insulation Resistance (M ohm)	Operating Temperature Range (°C)
NFA31CC220S1E4	22 +20%,-20%	25	200	1000 min.	-40 to 85
NFA31CC470S1E4	47 +20%,-20%	25	200	1000 min.	-40 to 85
NFA31CC101S1E4	100 +20%,-20%	25	200	1000 min.	-40 to 85
NFA31CC221S1E4	220 +20%,-20%	25	200	1000 min.	-40 to 85
NFA31CC471R1E4	470 +20%,-20%	25	200	1000 min.	-40 to 85
NFA31CC102R1E4	1000 +20%,-20%	25	200	1000 min.	-40 to 85
NFA31CC222R1E4	2200 +20%,-20%	25	200	1000 min.	-40 to 85
NFA31CC223R1C4	22000 +20%,-20%	16	200	1000 min.	-40 to 85

Number of Circuit : 4

■ Equivalent Circuit

■ Insertion Loss Characteristics (Typical)

On-Board Type (DC) EMI Suppression Filters (EMIFIL®)

muRata

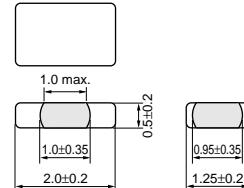
Chip EMIFIL® RC Combined Type NFR21G Series

The NFR21G series comprise high performance EMI suppression filter which can suppress distortion of waveform. Various items are to be used, considering circuit impedance and noise condition.

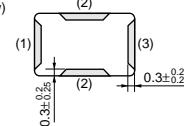
6

■ Features

1. Marata's original inner design realized small and low profile of 2.0x1.25x0.5mm.
2. Distributed constant circuit realizes smooth change of impedance which prevents reflection of signal and distortion of wave shape.
3. The NFR21G series is effective in the line where ground is not stable, because the resistance element in the filter absorb noise and return it to ground line.
4. The NFR21G series has no polarity so that it can be used in dual direction transport lines.
5. The NFR21G series has various line up of resistance (22-100ohm) and capacitance (10-100pF).

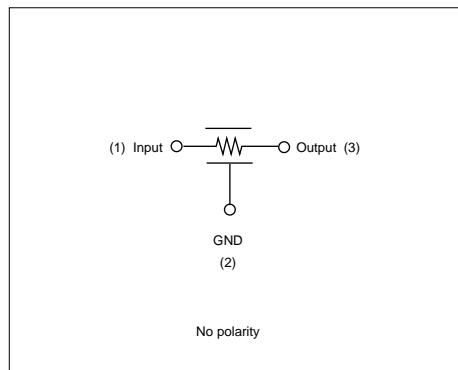

■ Applications

Interface lines and clock lines where signals are tend to be distorted.

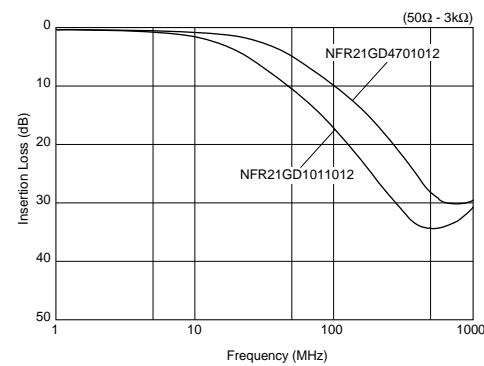
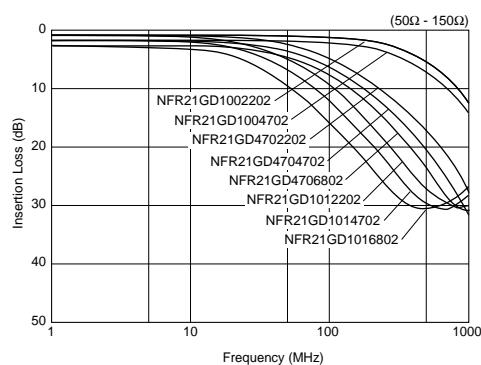

Part Number	Capacitance (pF)	Resistance (ohm)	Rated Current (mA)	Rated Voltage (Vdc)	Insulation Resistance (M ohm)	Operating Temperature Range (°C)
NFR21GD1002202	10 +20%,-20%	22 +30%,-30%	50	50	1000 min.	-40 to 85
NFR21GD1004702	10 +20%,-20%	47 +30%,-30%	35	50	1000 min.	-40 to 85
NFR21GD4702202	47 +20%,-20%	22 +30%,-30%	50	50	1000 min.	-40 to 85
NFR21GD4704702	47 +20%,-20%	47 +30%,-30%	35	50	1000 min.	-40 to 85
NFR21GD4706802	47 +20%,-20%	68 +30%,-30%	30	50	1000 min.	-40 to 85
NFR21GD4701012	47 +20%,-20%	100 +30%,-30%	25	50	1000 min.	-40 to 85
NFR21GD1012202	100 +20%,-20%	22 +30%,-30%	50	50	1000 min.	-40 to 85
NFR21GD1014702	100 +20%,-20%	47 +30%,-30%	35	50	1000 min.	-40 to 85
NFR21GD1016802	100 +20%,-20%	68 +30%,-30%	30	50	1000 min.	-40 to 85
NFR21GD1011012	100 +20%,-20%	100 +30%,-30%	25	50	1000 min.	-40 to 85

Number of Circuit : 1

(Top View)

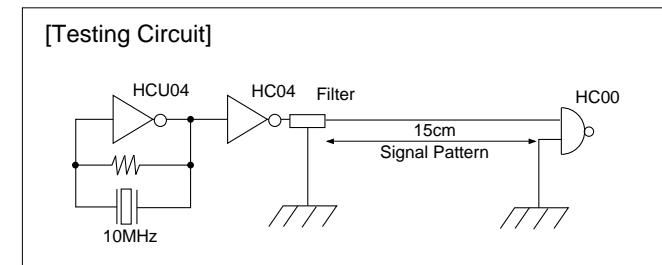


(Bottom View)



(in mm)

■ Equivalent Circuit

6


■ Insertion Loss Characteristics (Typical)

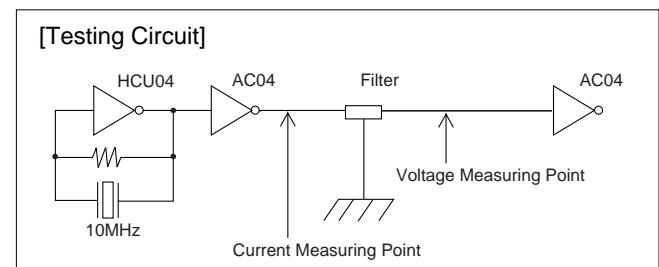
Noise Suppression Effect of NFR21G Series

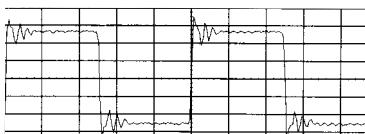
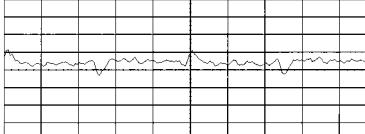
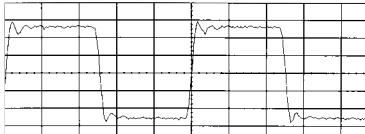
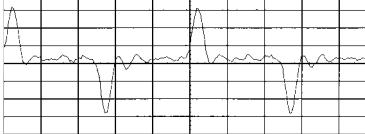
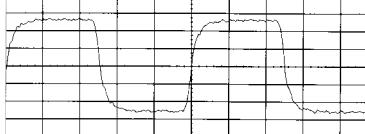
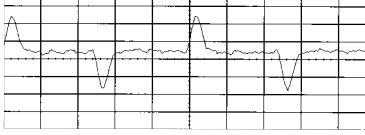
Effect of Noise Suppression by NFR21G

The NFR21G is effective even if ground line is not stable enough due to its distribute constant circuit structure.

6

With Stable Ground Line


Type of Filter	EMI Suppression Effect	Description
Noise Level without Filter		
Filter Mounting Condition Standard Type Chip EMIFIL® (100pF)		The standard type chip EMIFIL® is effective on stable ground line.
Filter Mounting Condition NFR21GD4701012		The NFR21G has some advantage to standard type EMIFIL® on stable ground line.







With Poor Ground Line

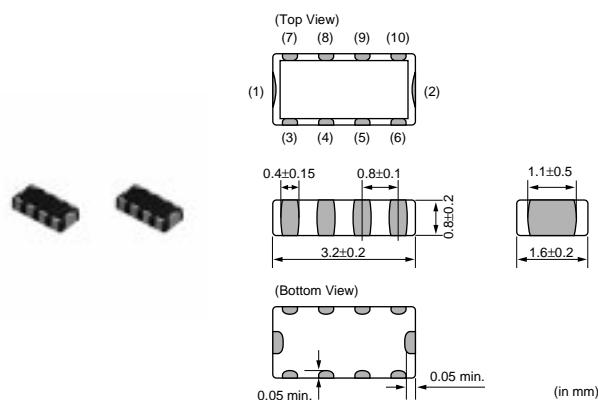
Type of Filter	EMI Suppression Effect	Description
Noise Level without Filter		
Filter Mounting Condition Standard Type Chip EMIFIL® (100pF)		The standard type EMIFIL® lose efficiency on poor ground line.
Filter Mounting Condition NFR21GD4701012		The NFR21G is effective even on poor ground line because of its distribute constant circuit structure and unique system to limit rush current.

Noise Suppression Effect of NFR21G Series

■ Waveform Distortion Suppressing Function by NFR21G

Type of Filter	EMI Suppression Effect	Description
Initial Waveform (no filter)	<p>Voltage Waveform</p> <p>↑ :1V/div → :20ns/div</p> <p>Current Waveform</p> <p>↑ :2mA/div → :20ns/div</p>	Resonance between the internal capacitance of the IC and the inductance of the print pattern causes waveform overshooting and undershooting.
When Ordinary Capacitor Filter is Used	<p>Output Voltage Waveform</p> <p>↑ :1V/div → :20ns/div</p> <p>Input Current Waveform</p> <p>↑ :2mA/div → :20ns/div</p>	<p>Ordinary capacitor filters have no waveform distortion suppressing capability, and they cannot suppress disturbances in the waveforms.</p> <p>The current needed to charge and discharge the capacitor raises the peak level of current that flows out of the driver side IC, increasing the load on the IC.</p>
NFR21G	<p>Output Voltage Waveform</p> <p>↑ :1V/div → :20ns/div</p> <p>Input Current Waveform</p> <p>↑ :2mA/div → :20ns/div</p>	<p>The waveform distortion suppressing function of the NFR21G minimizes disturbances of waveforms.</p> <p>The NFR21G also includes a current limiting function, reducing the load on driver ICs.</p>

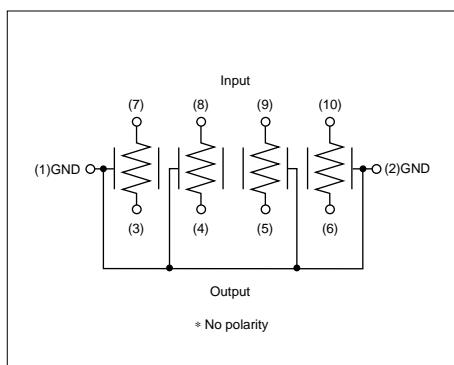
On-Board Type (DC) EMI Suppression Filters (EMIFIL®)

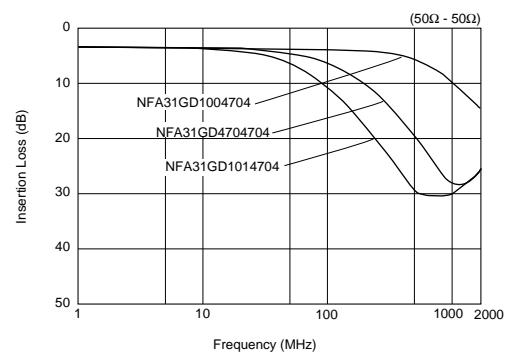
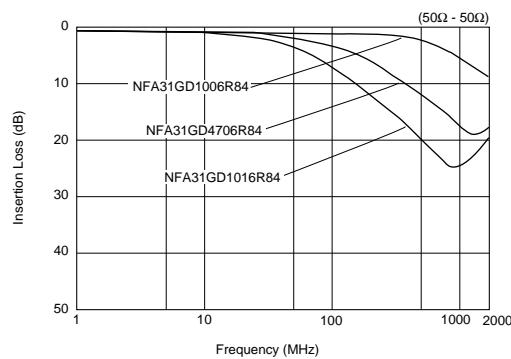

muRata

Chip EMIFIL® RC Combined Array Type NFA31G Series

NFA31G series is high performance EMI suppression filter array which designed 4 circuits noise filter in 3.2x1.6mm size. NFA31G realizes high density mounting.

■ Features


1. NFA31G has 4 circuits noise filter in 3.2x1.6mm size with 0.8mm pitch. High density mounting is available.
2. 3-terminal structure enables excellent high frequency performance.
3. Distributed constant circuit realizes smooth change of impedance which prevents reflection of signal and distortion of wave shape.
4. NFA31G series is effective in the line where ground is not stable, because the resistance element in the filter absorb noise and return it to ground line.



Part Number	Capacitance (pF)	Resistance (ohm)	Rated Current (mA)	Rated Voltage (Vdc)	Insulation Resistance (M ohm)	Operating Temperature Range (°C)
NFA31GD1006R84	10 +20%,-20%	6.8 +40%,-40%	50	6	1000 min	-40 to 85
NFA31GD1004704	10 +20%,-20%	47 +30%,-30%	20	6	1000 min	-40 to 85
NFA31GD1001014	10 +20%,-20%	100 +30%,-30%	15	6	1000 min	-40 to 85
NFA31GD4706R84	47 +20%,-20%	6.8 +40%,-40%	50	6	1000 min	-40 to 85
NFA31GD4704704	47 +20%,-20%	47 +30%,-30%	20	6	1000 min	-40 to 85
NFA31GD4701014	47 +20%,-20%	100 +30%,-30%	15	6	1000 min	-40 to 85
NFA31GD1016R84	100 +20%,-20%	6.8 +40%,-40%	50	6	1000 min	-40 to 85
NFA31GD1014704	100 +20%,-20%	47 +30%,-30%	20	6	1000 min	-40 to 85
NFA31GD1011014	100 +20%,-20%	100 +30%,-30%	15	6	1000 min	-40 to 85

Number of Circuit : 4

■ Equivalent Circuit

■ Insertion Loss Characteristics

On-Board Type (DC) EMI Suppression Filters (EMIFIL®)

muRata

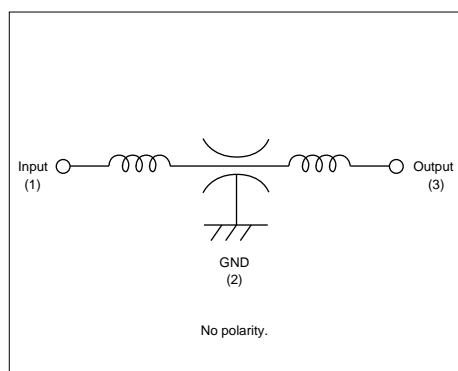
Chip EMIFIL® LC Combined Monolithic Type NFL18ST/NFL21S Series

NFL18ST Series

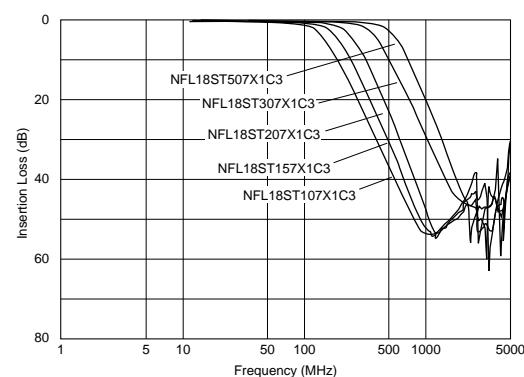
This NFL18ST series is the EMI suppression filter for high speed signal line, achieving T-type structure in 1.6x0.8mm size with Murata's multilayer technology.

■ Features

1. Ultra-Small size in 1.6x0.8x0.8mm
2. Steep insertion loss characteristics realize excellent noise suppression and prevent distortion of signal waveform.
3. By minimizing stray capacitance of Inductor, achieved high performance in noise suppression in high frequency range.
4. Five different values of cutoff frequency are available, ranging from 100MHz up to 500MHz.
5. No polarity using the same structure of all the side electrode.

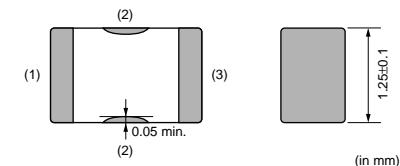
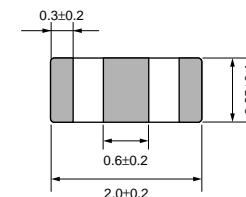

■ Applications

Noise suppression for video signal lines (RGB lines) and high speed clock lines.


Part Number	Cut-off Frequency (MHz)	Capacitance (pF)	Inductance (nH)	Rated Voltage (Vdc)	Rated Current (mA)	Insulation Resistance (M ohm)	Operating Temperature Range (°C)
NFL18ST107X1C3	100	40 +20%,-20%	175 +20%,-20%	16	100	1000 min.	-55 to 125
NFL18ST157X1C3	150	32 +20%,-20%	140 +20%,-20%	16	100	1000 min.	-55 to 125
NFL18ST207X1C3	200	25 +20%,-20%	110 +20%,-20%	16	150	1000 min.	-55 to 125
NFL18ST307X1C3	300	18 +20%,-20%	62 +20%,-20%	16	200	1000 min.	-55 to 125
NFL18ST507X1C3	500	10 +20%,-20%	43 +20%,-20%	16	200	1000 min.	-55 to 125

Number of Circuits : 1

■ Equivalent Circuit

■ Insertion Loss Characteristics (Typical)

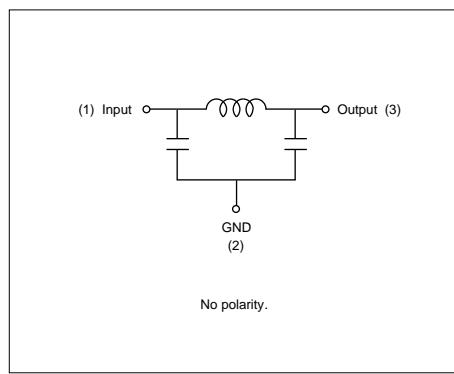
NFL21S Series

The chip "EMIFIL" NFL21S series is high performance EMI suppression filter in 2.0x1.25mm size for high speed signal line by using Murata's processing technology.

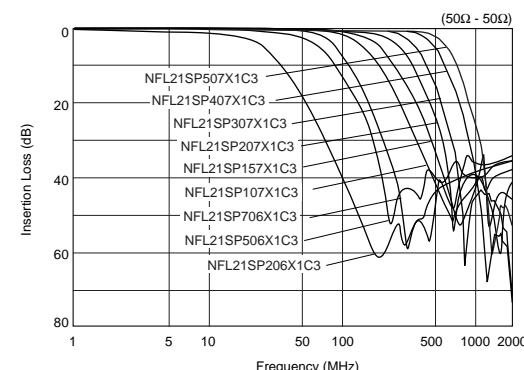
(in mm)

■ Features

1. The filters suppress noise with few affection on the signal itself due to its steep filtering characteristics.
2. Murata's original internal structure design enables excellent noise suppression up to high frequencies.
3. The NFL21S series are available in nine different values of cutoff frequency ranging from 20MHz up to 500MHz.


■ Applications

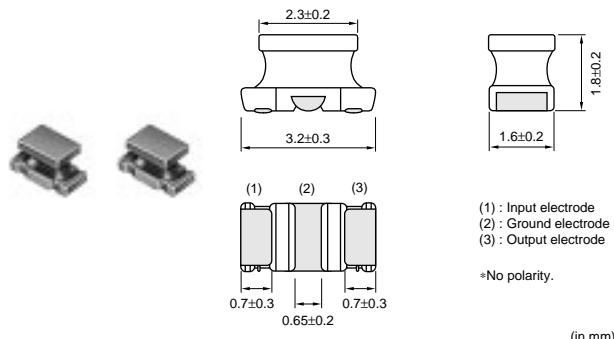
Suppression of high magnitude radiated noise generated by high speed digital circuits such as clock and RGB.


Part Number	Cut-off Frequency (MHz)	Capacitance (pF)	Inductance (nH)	Rated Voltage (Vdc)	Rated Current (mA)	Insulation Resistance (M ohm)	Operating Temperature Range (°C)
NFL21SP206X1C3	20	240 +20%,-20%	700 +20%,-20%	16	100	1000 min.	-55 to 125
NFL21SP506X1C3	50	84 +20%,-20%	305 +20%,-20%	16	150	1000 min.	-55 to 125
NFL21SP706X1C3	70	76 +20%,-20%	185 +20%,-20%	16	150	1000 min.	-55 to 125
NFL21SP107X1C3	100	44 +20%,-20%	135 +20%,-20%	16	200	1000 min.	-55 to 125
NFL21SP157X1C3	150	28 +20%,-20%	128 +20%,-20%	16	200	1000 min.	-55 to 125
NFL21SP207X1C3	200	22 +20%,-20%	72 +20%,-20%	16	250	1000 min.	-55 to 125
NFL21SP307X1C3	300	19 +10%,-10%	45 +10%,-10%	16	300	1000 min.	-55 to 125
NFL21SP407X1C3	400	16 +10%,-10%	34 +10%,-10%	16	300	1000 min.	-55 to 125
NFL21SP507X1C3	500	12 +10%,-10%	31 +10%,-10%	16	300	1000 min.	-55 to 125

Number of Circuits : 1

■ Equivalent Circuit

■ Insertion Loss Characteristics (Typical)



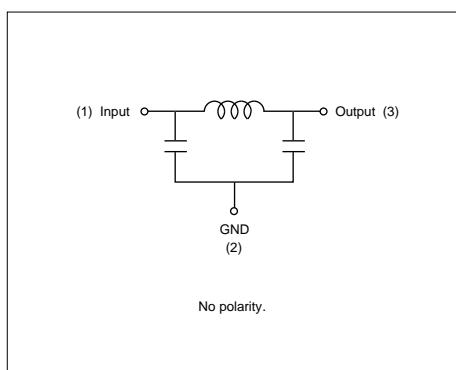
On-Board Type (DC) EMI Suppression Filters (EMIFIL®)

muRata

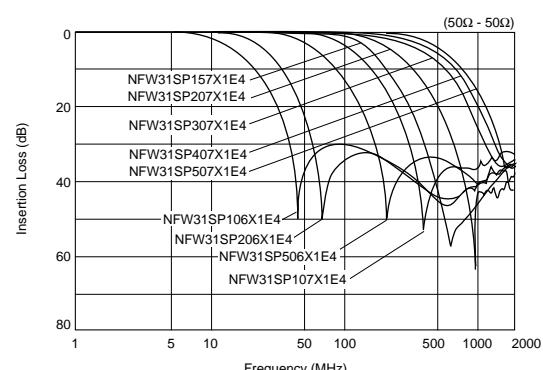
Chip EMIFIL® LC Combined Winding Type NFW31S Series

The signal line chip EMI filter NFW31S series consist of high performance EMI suppression filter. They are designed for noise suppression in high speed signal digital circuits in which the signal harmonics are prone to becoming noise sources. These filters achieve a 100dB/dec. (typ.) damping characteristic with Murata's innovative circuit design. This makes these chips effective in applications where the signal and noise frequencies are close to each other.

(in mm)

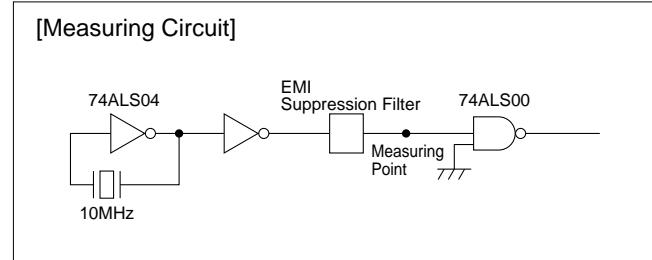

■ Features

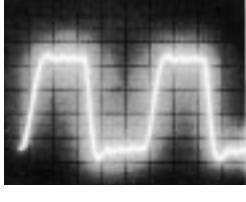
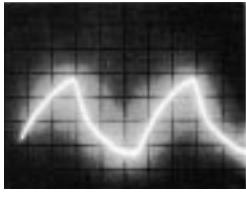
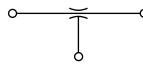
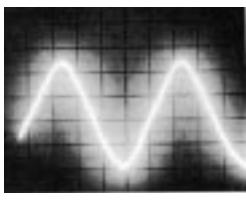
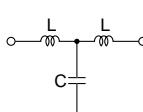
1. The filters suppress signal noise with little or no attenuation of the signal itself.
2. Murata's original internal structure design enables excellent noise suppression up to high frequencies (40dB at 1GHz typ.).
3. The NFW31S series is available in six different values of cutoff frequency ranging from 10MHz up to 500MHz.


Part Number	Nominal Cut-off Freq. (MHz)	Attenuation at 10MHz (dB)	Attenuation at 20MHz (dB)	Attenuation at 50MHz (dB)	Attenuation at 100MHz (dB)	Attenuation at 150MHz (dB)	Attenuation at 200MHz (dB)	Attenuation at 300MHz (dB)	Attenuation at 400MHz (dB)	Attenuation at 500MHz (dB)	Attenuation at 1000MHz (dB)
NFW31SP106X1E4	10	6 max.	5 min.	25 min.	25 min.	-	25 min.	-	-	30 min.	30 min.
NFW31SP206X1E4	20	-	6 max.	5 min.	25 min.	-	25 min.	-	-	30 min.	30 min.
NFW31SP506X1E4	50	-	-	6 max.	10 min.	-	30 min.	-	-	30 min.	30 min.
NFW31SP107X1E4	100	-	-	-	6 max.	-	5 min.	-	-	20 min.	30 min.
NFW31SP157X1E4	150	-	-	-	-	6 max.	-	10 min.	20 min	30 min.	30 min.
NFW31SP207X1E4	200	-	-	-	-	-	6 max.	-	-	10 min.	30 min.
NFW31SP307X1E4	300	-	-	-	-	-	-	6 max.	-	5 min.	15 min.
NFW31SP407X1E4	400	-	-	-	-	-	-	-	6 max.	-	10 min.
NFW31SP507X1E4	500	-	-	-	-	-	-	-	-	6 max.	10 min.

Rated Current : 200mA Rated Voltage : 25Vdc Operating Temperature Range : -40°C to 85°C

■ Equivalent Circuit








■ Insertion Loss Characteristics (Typical)

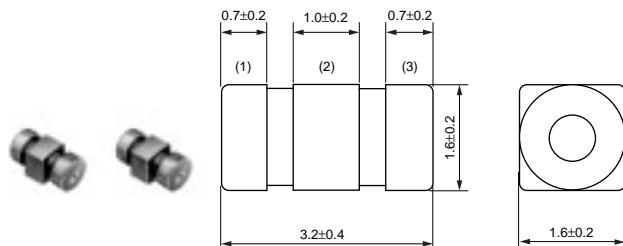
Noise Suppression Effect of NFW31S Series

■ Example of EMI Suppression in an Actual Circuit

Type of Filter	Signal Wave Form (20ns/div) 1V/div)	EMI Suppression Effect	Description
Signal Waveform and Noise Spectrum before Filter Mounting	 Signal Waveform (20ns/div) 1V/div)	 Noise Spectrum (10:1 Active Probe)	
NFW31S Series (Cut-off frequency 50MHz)			The NFW31S's steep attenuation characteristic means excellent EMI suppression without waveform cornering.
Conventional Chip Solid type EMI Filter (NFM41CC 470pF)	 		3-terminal capacitors suppress signal frequencies as EMI frequencies so the signal waveform is distorted.
Filter Combined with Conventional LCs	 L : Chip Inductor C : Chip Capacitor (270pF)		Combinations of inductors and capacitors can yield a steep attenuation characteristic, but they require a great deal more mounting space. Moreover, at high frequencies the EMI suppression is less than that obtained by the NFW31S.

On-Board Type (DC) EMI Suppression Filters (EMIFIL®)

muRata

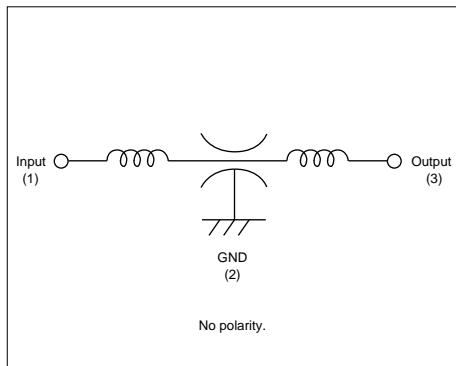

Chip EMIFIL® LC Combined Type for Large Current NFE31P/NFE61P/NFE61H Series

NFE31P Series

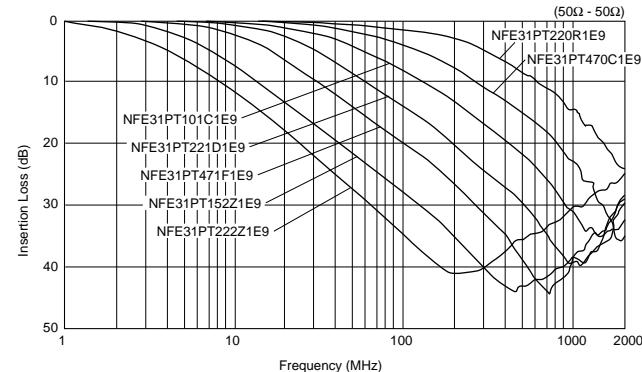
The chip "EMIFIL" NFE31P is small size T-type circuit EMI suppression filter.

■ Features

1. Its large rated current of 6A and low voltage drop due to small DC resistance are suitable for DC power line use.
2. The feedthrough capacitor realized excellent high frequency characteristics.
3. The structure incorporates built-in ferrite beads which minimize resonance with surrounding circuits.
4. 22-22,000pF lineups can be used signal line.



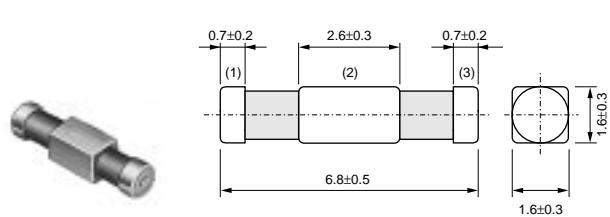
(in mm)


10

Part Number	Capacitance (pF)	Rated Voltage (Vdc)	Rated Current (A)	Insulation Resistance (M ohm)	Operating Temperature Range (°C)
NFE31PT220R1E9	22 +30%,-30%	25	6	1000 min.	-40 to 85
NFE31PT470C1E9	47 +50%,-20%	25	6	1000 min.	-40 to 85
NFE31PT101C1E9	100 +80%,-20%	25	6	1000 min.	-40 to 85
NFE31PT221D1E9	220 +50%,-20%	25	6	1000 min.	-40 to 85
NFE31PT471F1E9	470 +50%,-20%	25	6	1000 min.	-40 to 85
NFE31PT152Z1E9	1500 +50%,-20%	25	6	1000 min.	-40 to 85
NFE31PT222Z1E9	2200 +50%,-50%	25	6	1000 min.	-40 to 85

■ Equivalent Circuit

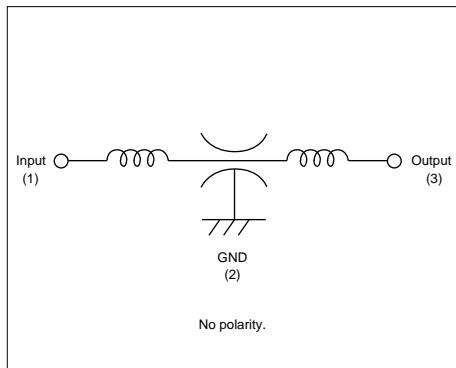
■ Insertion Loss Characteristics (Typical)

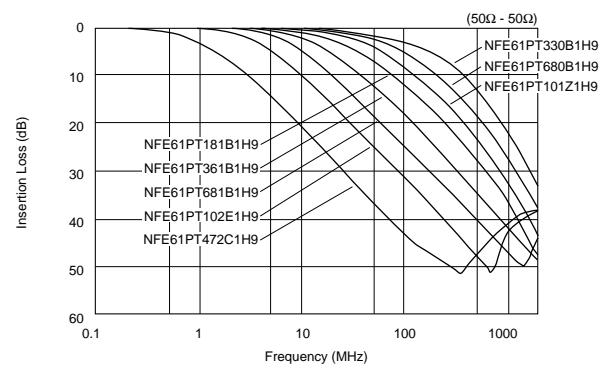


NFE61P Series

The chip "EMIFIL" NFE61P is T-type circuit EMI suppression filter.

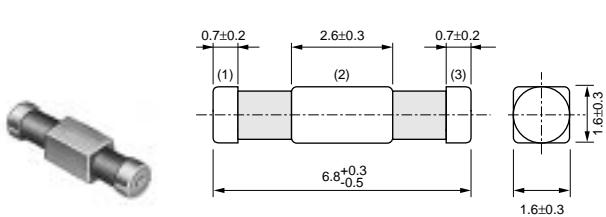
■ Feature


1. Its large rated current of 2A and low voltage drop due to small DC resistance are suitable for DC power line use.
2. The feedthrough capacitor realized excellent high frequency characteristics.
3. The structure incorporates built-in ferrite beads which minimize resonance with surrounding circuits.
4. 33-4700pF lineups can be used signal line.


(in mm)

Part Number	Capacitance (pF)	Rated Voltage (Vdc)	Rated Current (A)	Insulation Resistance (M ohm)	Operating Temperature Range (°C)
NFE61PT330B1H9	33 +30%,-30%	50	2	1000 min.	-25 to 85
NFE61PT680B1H9	68 +30%,-30%	50	2	1000 min.	-25 to 85
NFE61PT101Z1H9	100 +30%,-30%	50	2	1000 min.	-25 to 85
NFE61PT181B1H9	180 +30%,-30%	50	2	1000 min.	-25 to 85
NFE61PT361B1H9	360 +20%,-20%	50	2	1000 min.	-25 to 85
NFE61PT681B1H9	680 +30%,-30%	50	2	1000 min.	-25 to 85
NFE61PT102E1H9	1000 +80%,-20%	50	2	1000 min.	-25 to 85
NFE61PT472C1H9	4700 +80%,-20%	50	2	1000 min.	-25 to 85

■ Equivalent Circuit

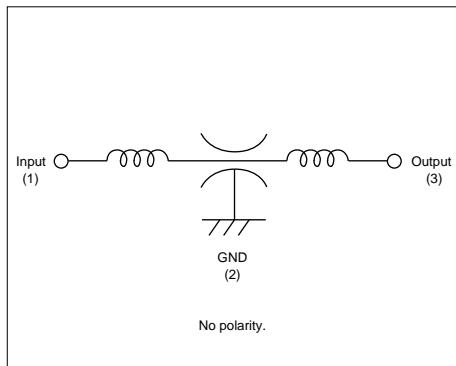

■ Insertion Loss Characteristics (Typical)

NFE61H Series

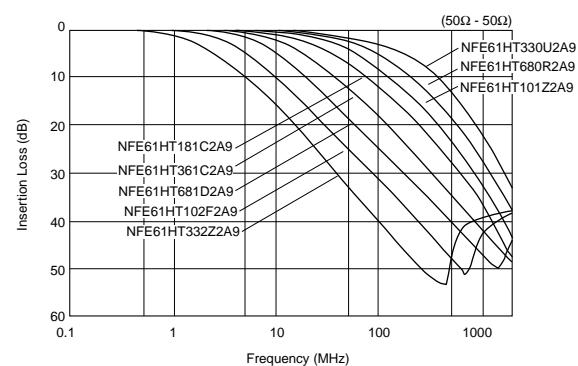
The T-type chip EMI Filter NFE61H series consists of a feedthru capacitor and ferrite beads.

Extending the operation condition of NFE61P, NFE61H series can be used in application set under severe operating condition.

(in mm)


■ Features

1. These filters have an extended operating temperature range of -55°C. to +125°C.
2. Its large rated current of 2A and low voltage drop due to small DC resistance are suitable for DC power line use.
3. The feedthrough capacitor realized excellent high frequency characteristics.
4. The structure incorporates built-in ferrite beads which minimize resonance with surrounding circuits.
5. 33-3300pF lineups can be used signal line.


10

Part Number	Capacitance (pF)	Rated Voltage (Vdc)	Rated Current (A)	Insulation Resistance (M ohm)	Operating Temperature Range (°C)
NFE61HT330U2A9	33 +30%,-30%	100	2	1000 min.	-55 to 125
NFE61HT680R2A9	68 +30%,-30%	100	2	1000 min.	-55 to 125
NFE61HT101Z2A9	100 +30%,-30%	100	2	1000 min.	-55 to 125
NFE61HT181C2A9	180 +30%,-30%	100	2	1000 min.	-55 to 125
NFE61HT361C2A9	360 +20%,-20%	100	2	1000 min.	-55 to 125
NFE61HT681D2A9	680 +30%,-30%	100	2	1000 min.	-55 to 125
NFE61HT102F2A9	1000 +80%,-20%	100	2	1000 min.	-55 to 125
NFE61HT332Z2A9	3300 +80%,-20%	100	2	1000 min.	-55 to 125

■ Equivalent Circuit

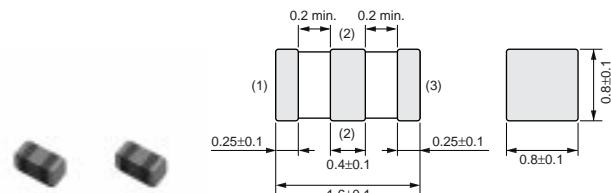
■ Insertion Loss Characteristics (Typical)

On-Board Type (DC) EMI Suppression Filters (EMIFIL®)

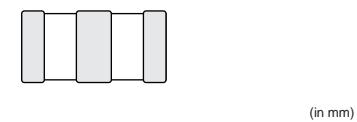
muRata

Chip EMIFIL® for Large Current NFM_P Series

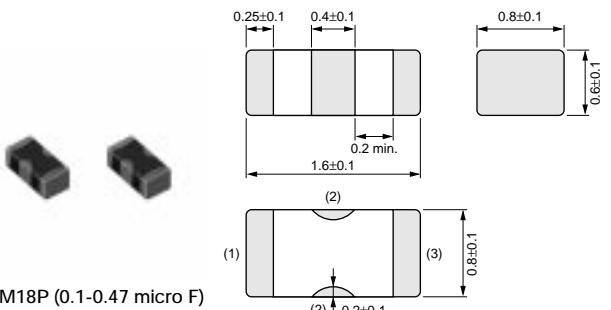
NFM18P Series


The NFM18P series is the EMI suppression filter for high speed IC power lines which realized large capacitance 1 F max. and rated current 2A in 1608 size by Murata's multilayer technology.

■ Features

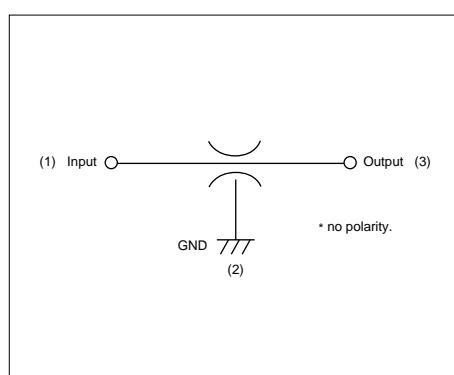

1. Ultra-small size in 1.6x0.8mm.
2. 3-terminal structure with low residual (ESL)* and Large capacitance 1 micro F max. realizes large insertion loss characteristics over wide frequency range.
- * Not exceeding one-tenth of Monolithic ceramic capacitors. (2-terminal)
3. Large rated current 2A is suitable for noise suppression of circuit which requires large current.
4. The NFM18P series has line up of capacitance 0.1-1.0 micro F.

■ Applications

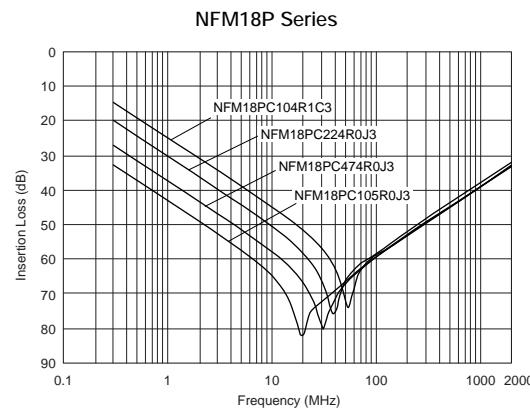

1. Noise suppression for large capacitance circuit such as high speed IC power lines.
2. Control change of voltage for high speed IC.

NFM18P (1 micro F)

(in mm)



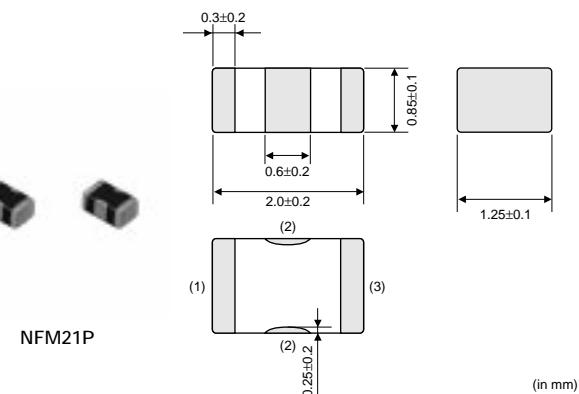
NFM18P (0.1-0.47 micro F)


(in mm)

Part Number	Capacitance (μF)	Rated Voltage (Vdc)	Rated Current (A)	Insulation Resistance (M ohm)	Operating Temperature Range (°C)
NFM18PC104R1C3	0.1 +20%,-20%	16	2	1000 min.	-55 to 125
NFM18PC224R0J3	0.22 +20%,-20%	6.3	2	1000 min.	-55 to 125
NFM18PC474R0J3	0.47 +20%,-20%	6.3	2	1000 min.	-55 to 125
NFM18PC105R0J3	1 +20%,-20%	6.3	2	500 min.	-55 to 105

■ Equivalent Circuit

■ Insertion Loss Characteristics

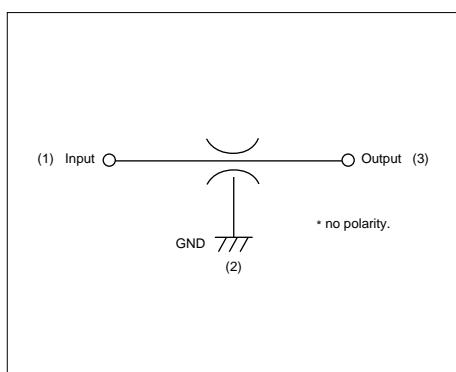


NFM21P Series

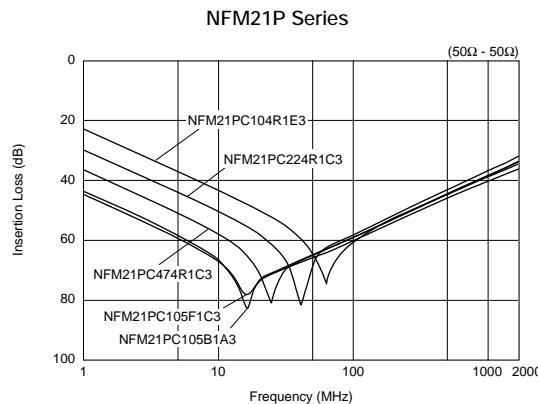
NFM21P is 3-terminal structure component. This product can be applied to large current DC power lines. NFM21P is suitable for noise suppression of DC power lines where relatively operates large current.

■ Features

1. The rated current of 4A is suitable for IC's individual power line.
2. Small dimension enables higher density packaging.
NFM21P is much smaller size. (2.0x1.25x0.85mm)
3. Murata's original internal electrode structure design which realizes excellent EMI suppression effect from low frequency to high frequency.



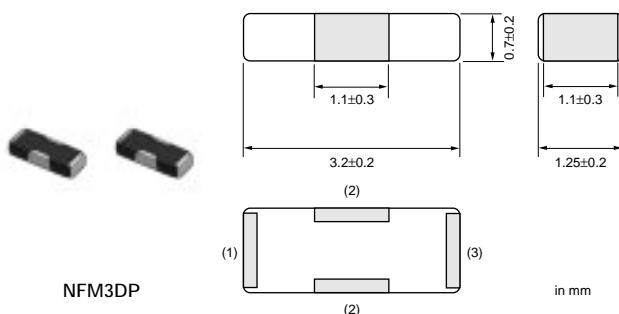
(in mm)


Part Number	Capacitance (μ F)	Rated Voltage (Vdc)	Rated Current (A)	Insulation Resistance (M ohm)	Operating Temperature Range (°C)
NFM21PC104R1E3	0.1 +20%,-20%	25	2	1000 min.	-55 to 125
NFM21PC224R1C3	0.22 +20%,-20%	16	2	1000 min.	-55 to 125
NFM21PC474R1C3	0.47 +20%,-20%	16	2	1000 min.	-55 to 125
NFM21PC105B1A3	1 +20%,-20%	10	4	500 min.	-40 to 85
NFM21PC105F1C3	1 +80%,-20%	16	2	500 min.	-40 to 85

11

■ Equivalent Circuit

■ Insertion Loss Characteristics



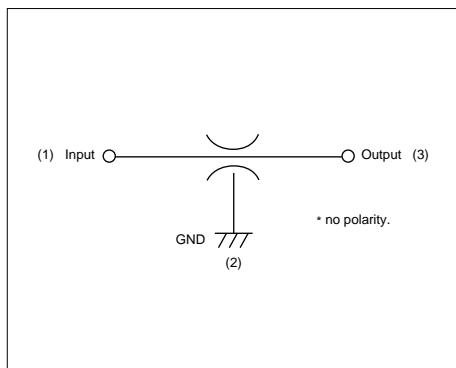
NFM3DP Series

The chip "EMIFIL" NFM3DP is a chip type 3-terminal capacitor with high rated current of 2A.
This series is suited for noise suppression in DC power supply lines of digital instruments.

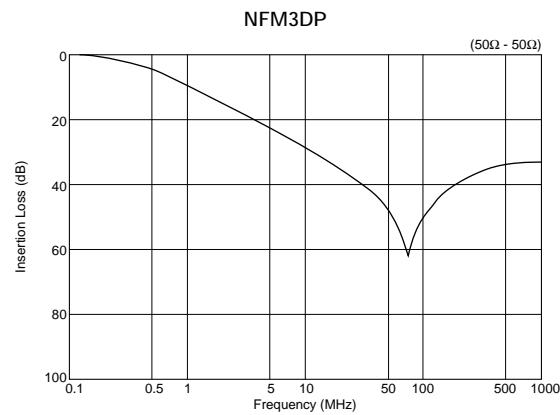
■ Features

1. Large rated current (2A) is suitable for the application in DC power line.
2. Small size (3.2x1.25mm) and low profile (0.7mm max.)

NFM3DP

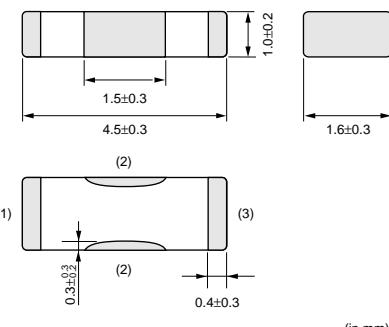

■ Applications

1. Personal computers, Word processors and Peripherals
2. Telephones, PPCs, Communication equipments, etc.
3. Digital TVs, VCRs
4. Telecommunication equipment


Part Number	Capacitance (μF)	Rated Voltage (Vdc)	Rated Current (A)	Insulation Resistance (M ohm)	Operating Temperature Range (°C)
NFM3DPC223R1H2	0.022 +20%,-20%	50	2	1000 min.	-55 to 85

11

■ Equivalent Circuit



■ Insertion Loss Characteristics

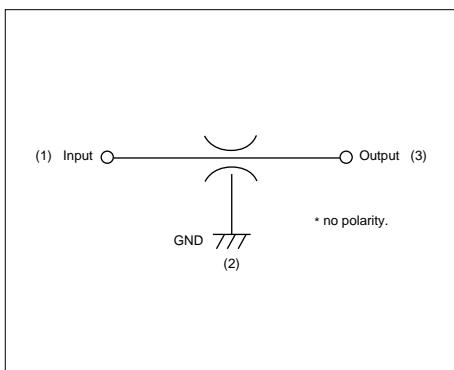
NFM41P Series

The chip "EMIFIL" NFM41P series are 3-terminal structure SMT components. These components are able to be applied to large current DC power lines. NFM41P series are suitable in noise suppression DC lines where relatively large currents operate. Using base metal to the electrode.

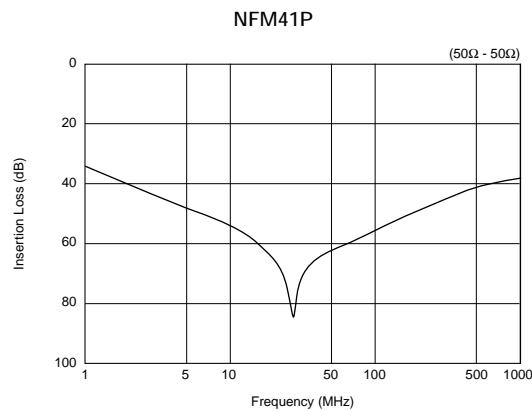
(in mm)

■ Features

1. Large rated current (2A) is suitable for the application in DC power line.
2. High electrostatic capacitance and remarkable high frequency performance are effective for the immunity against the surge noise and the pulse noise.


■ Applications

1. Personal computers, Word processors and Peripherals
2. Telephones, PPCs, Communication equipments, etc.
3. Digital TVs, VCRs
4. Telecommunication equipment

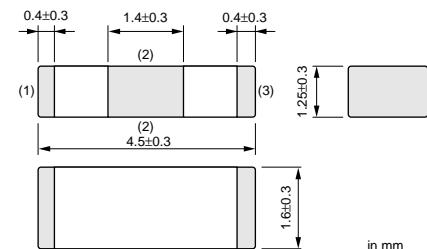

11

Part Number	Capacitance (μ F)	Rated Voltage (Vdc)	Rated Current (A)	Insulation Resistance (M ohm)	Operating Temperature Range (°C)
NFM41PC204F1H3	0.2 +80%, -20%	50	2	1000 min.	-55 to 85

■ Equivalent Circuit

■ Insertion Loss Characteristics

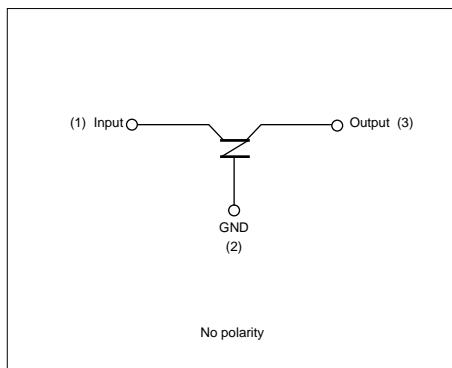
On-Board Type (DC) EMI Suppression Filters (EMIFIL®)

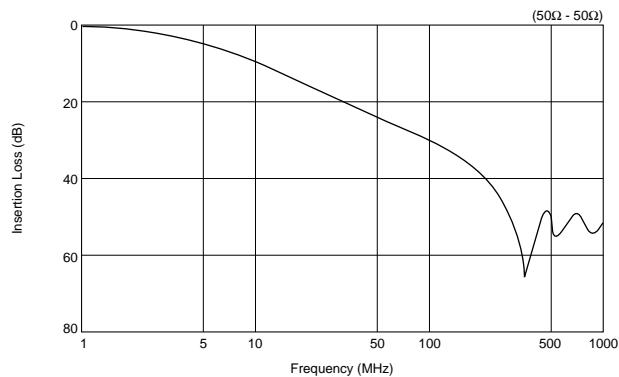

muRata

Chip EMIGUARD® (EMIFIL® with Varistor Function) VFM41R Series

The VFM41R series is a chip type EMI filter with varistor function. Its 3-terminal structure provides high performance by suppressing high frequency noise and absorbing surge noise. VFM41R can meet both EMI noise and surge noise.

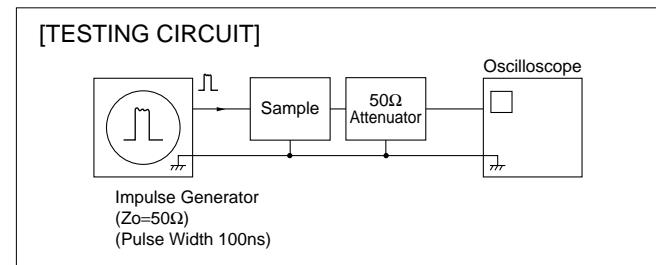
■ Applications


ESD surge protection and EMI suppression in various electric equipments such as car electronic equipments, portable electronic equipments, telecommunication terminals, office automation equipments, home automation equipments or factory automation equipments.


in mm

Part Number	Rated Voltage (Vdc)	Varistor Voltage (V)	Clamping Voltage (max.)	Capacitance (pF)	Rated Current (mA)	Peak Pulse Current (A)	Operating Temperature Range (°C)
VFM41RN222N1C	16	27 +5V,-5V	50V(V2A)	2200 +30%,-30%	200	50	-40 to 125

■ Equivalent Circuit


■ Insertion Loss Characteristics

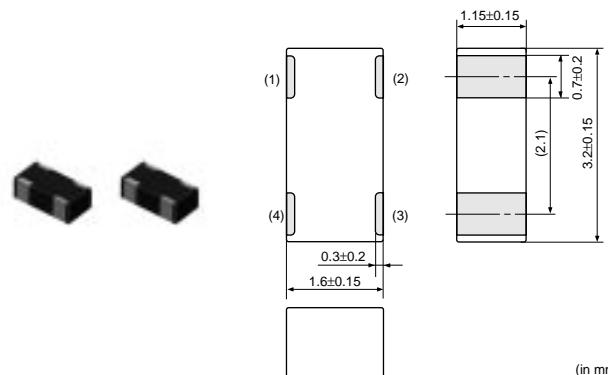
Noise Suppression Effect of VFM Series

■ Impulse Noise Absorption

(Comparison between VFM41R and Standard 2-terminal Varistor)

Type of Filter	EMI Suppression Effect	Description
Original Waveform	<p>Voltage Waveform</p> <p>Frequency Spectrum</p>	<p>The Lower chart is a frequency response of the upper chart. Note that the scale of original wave chart and that of the output wave chart is different because of circumstances.</p>
The commonly used 2-terminal varistor	<p>Voltage Waveform</p> <p>Frequency Spectrum</p>	<p>* Final voltage comes below 0V because of the effect of signal reflection.</p> <p>The rising part of pulse, which is mostly consists of high-frequency element, remains because inductance in electrodes becomes obstacle.</p>
Chip Solid EMIGUARD® VFM41R	<p>Voltage Waveform</p> <p>Frequency Spectrum</p>	<p>The 3-terminal structure minimizes the effect of inductance in electrodes and pulse rising noise is absorbed completely.</p>

On-Board Type (DC) EMI Suppression Filters (EMIFIL®)


muRata

Chip Common Mode Choke Coils Film Type DLP31S Series

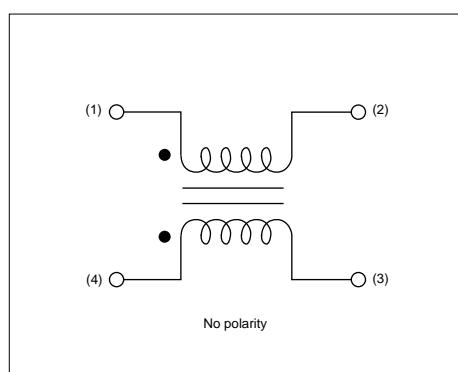
The DLP31S series is chip common mode choke coil that is realized high impedance in small size with ferrite material technology and film processing technology. The DLP31S series has excellent performance at high frequency range. It is suitable for differential signal line application.

■ Features

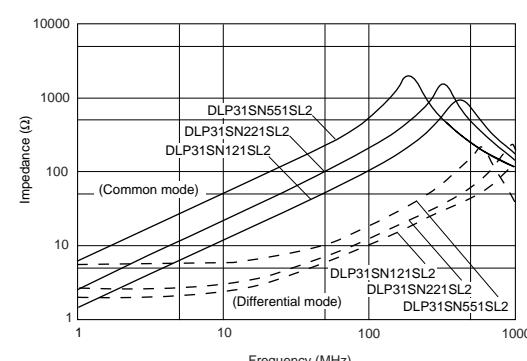
1. DLP31S is common mode choke coil with small size, low profile, SMD. 3.2x1.6x1.15mm (tolerance: 0.15mm)
2. DLP31S has high common mode impedance (550ohm at 100MHz typ.) in small size.
3. DLP31S suppress high frequency noise that was unable to be suppressed with existing common mode choke coils. Suitable for differential signal line as like USB, because DLP31S does not provide distortion to high speed signal transmission due to its high coupling (Coupling coefficient: 0.98 min.)

(in mm)

■ Applications


1. USB lines of PC, Peripheral equipment.
2. LVDS lines of Note-PC, LCD.
3. USB lines of digital AV equipment such as digital camera.

13


Part Number	Common Mode Impedance (at 100MHz, 20 degree C) (ohm)	Rated Current (A)	Rated Voltage (Vdc)	Insulation Resistance (M ohm)	Withstand Voltage (Vdc)	DC Resistance (max.) (ohm)
DLP31SN551SL2	550 (Typ.)	0.1	16	100 min.	40	3.6
DLP31SN221SL2	220 (Typ.)	0.1	16	100 min.	40	2.5
DLP31SN121SL2	120 (Typ.)	0.1	16	100 min.	40	2.0

Operating Temperature Range : -40°C to 85°C

■ Equivalent Circuit

■ Impedance-Frequency Characteristics

On-Board Type (DC) EMI Suppression Filters (EMIFIL®)

muRata

Chip Common Mode Choke Coils Arrays Film Type DLP31D Series

The DLP31D series is chip common mode choke coil array which is realized high coupling and high impedance in small size with ferrite material technology and thin film processing technology.

The DLP31D series has excellent performance at high frequency range. It is suitable for high-speed differential signal line application.

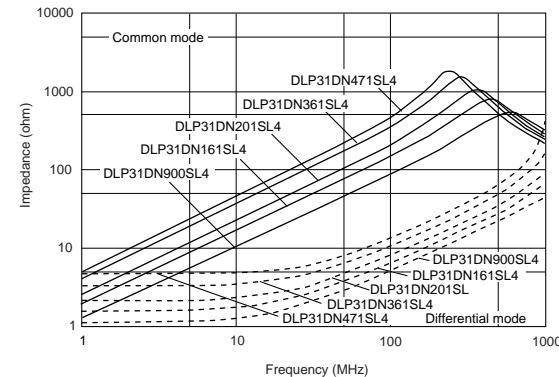
■ Features

1. 2 components are in one package of 3.2x1.6mm size.
2. Thin type 1.15mm
3. High common mode impedance characteristics (470ohm max. at 100MHz) in small size.
4. The DLP31D can suppress common mode noise without distortion to high speed signal transmission due to its high coupling.

■ Applications

1. IEEE1394 lines of digital video camera, PC.
2. LVDS lines of Note-PC, LCD.
3. USB lines of PC.

14


Part Number	Common Mode Impedance (at 100MHz, 20 degree C) (ohm)	Rated Current (mA)	Rated Voltage (Vdc)	Insulation Resistance (M ohm)	Withstand Voltage (Vdc)	DC Resistance (max.) (ohm)
DLP31DN471SL4	470 ±20%(Typ.)	100	10	100 min.	25	3.0
DLP31DN361SL4	360 ±20%(Typ.)	100	10	100 min.	25	2.5
DLP31DN201SL4	200 ±20%(Typ.)	100	10	100 min.	25	1.6
DLP31DN161SL4	160 ±20%(Typ.)	100	10	100 min.	25	1.2
DLP31DN900SL4	90 ±20%(Typ.)	100	10	100 min.	25	0.7

Operating Temperature Range : -40°C to 85°C

■ Equivalent Circuit

■ Impedance-Frequency Characteristics

On-Board Type (DC) EMI Suppression Filters (EMIFIL®)

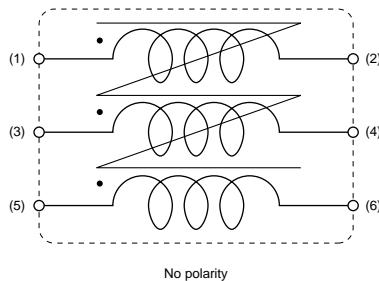
muRata

Chip Common Mode Choke Coils Monolithic Type DLM2HG Series

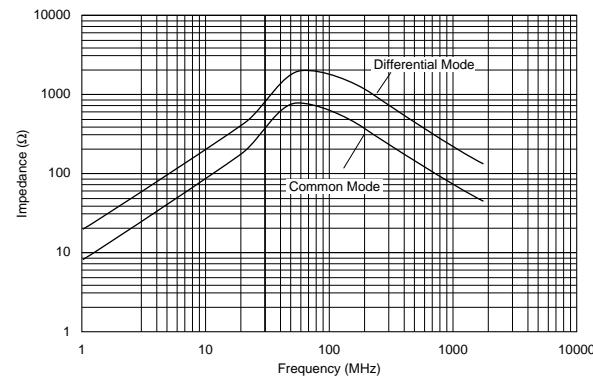
The DLM2HG Series is a high quality noise suppression for head phone line of high quality digital music equipment.

■ Features

1. Low distortion in audio signal, Low crosstalk.
2. Effective in noise suppression both of common mode and of differential mode.
3. Small size, low profile, SMD 2.5x2.0x1.2mm.


■ Applications

1. Head phone lines of digital music equipment such as DVD, MD player.
2. Head phone lines of Note-PC, PDA.

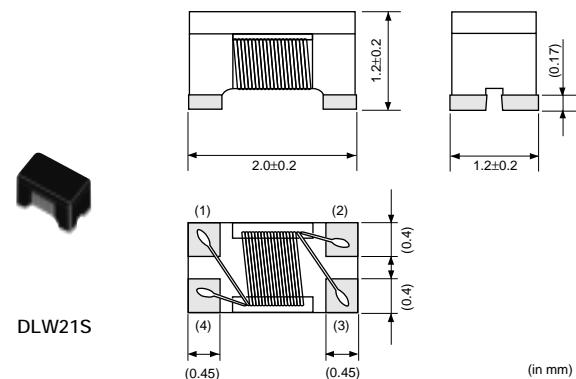

Part Number	Common Mode Impedance (at 100MHz, 20 degree C) (ohm)	Rated Current (mA)	Rated Voltage (Vdc)	Insulation Resistance (M ohm)	Withstand Voltage (Vdc)	DC Resistance (max.) (ohm)
DLM2HGN601SZ3	$600 \pm 25\%$	100	16	100 min.	100	0.40

Operating Temperature Range : -40°C to 85°C

■ Equivalent Circuit

■ Impedance-Frequency Characteristics

On-Board Type (DC) EMI Suppression Filters (EMIFIL®)


muRata

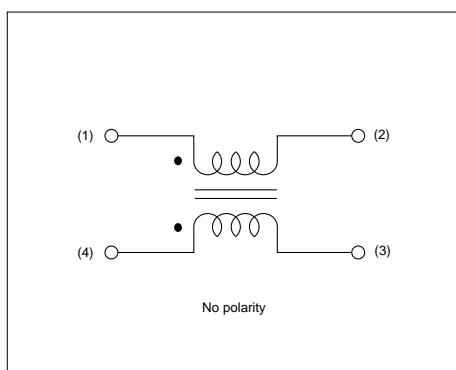
Chip Common Mode Choke Coils Winding Type DLW21S/DLW31S Series

DLW21 Series

■ Features

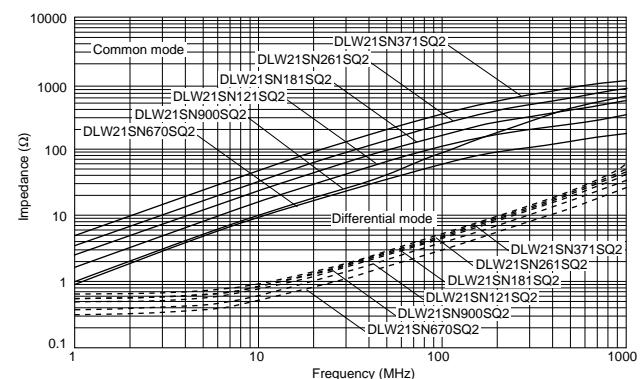
1. DLW21S series realizes small size and low profile. 2.0x1.2x1.2mm.
2. High common mode impedance at high frequency effects excellent noise suppression performance.
3. Various common mode impedance items of 67 to 370ohm can be used, considering noise level and signal frequency.
4. DLW21S series enables noise suppression for differential signal line, without distortion in high speed signal transmission due to its high coupling.
5. Lead is not contained in the product.
6. Small dimension enables higher density packaging.

■ Applications


1. USB lines of PC, Peripheral equipment.
2. LVDS lines of Note-PC, LCD.
3. USB lines of Small digital AV equipment such as digital camera.

Part Number	Common Mode Impedance (at 100MHz, 20 degree C) (ohm)	Rated Current (mA)	Rated Voltage (Vdc)	Insulation Resistance (M ohm)	Withstand Voltage (Vdc)	DC Resistance (max.) (ohm)
DLW21SN371SQ2	370 (Typ.)	280	50	10 min.	125	0.45
DLW21SN261SQ2	260 (Typ.)	300	50	10 min.	125	0.40
DLW21SN181SQ2	180 (Typ.)	330	50	10 min.	125	0.35
DLW21SN121SQ2	120 (Typ.)	370	50	10 min.	125	0.30
DLW21SN900SQ2	90 (Typ.)	330	50	10 min.	125	0.35
DLW21SN670SQ2	67 (Typ.)	400	50	10 min.	125	0.25

Operating Temperature Range : -40°C to 85°C


■ Equivalent Circuit

DLW21S

■ Impedance-Frequency Characteristics

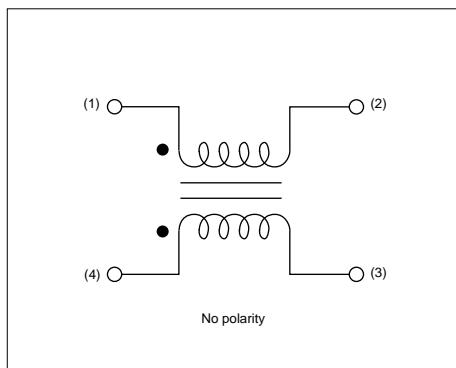
DLW21S

DLW31 Series

■ Features

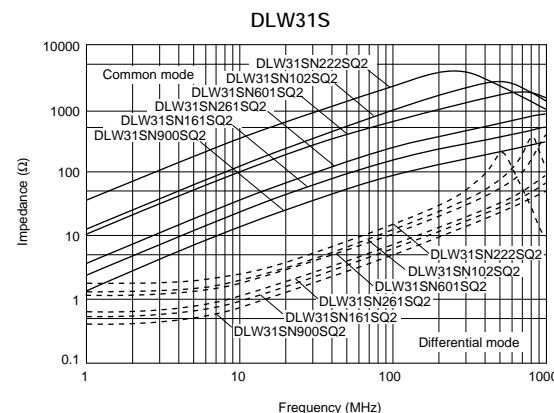
1. DLW31S realizes small size and low profile.
3.2x1.6x1.9mm.
2. High common mode impedance at high frequency effects excellent noise suppression performance.
3. Various common mode impedance items of 90 to 2200ohm can be used, considering noise level and signal frequency.
4. DLW31S series enables noise suppression for differential signal line, without distortion in high speed signal transmission due to its high coupling.
5. Lead is not contained in the product.
6. Small dimension enables higher density packaging.

■ Applications


1. USB lines of PC, Peripheral equipment.
2. LVDS lines of Note-PC, LCD.

Part Number	Common Mode Impedance (at 100MHz, 20 degree C) (ohm)	Rated Current (mA)	Rated Voltage (Vdc)	Insulation Resistance (M ohm)	Withstand Voltage (Vdc)	DC Resistance (max.) (ohm)
DLW31SN222SQ2	2200 (Typ.)	200	50	10 min.	125	1.2
DLW31SN102SQ2	1000 (Typ.)	230	50	10 min.	125	1.0
DLW31SN601SQ2	600 (Typ.)	260	50	10 min.	125	0.8
DLW31SN261SQ2	260 (Typ.)	310	50	10 min.	125	0.5
DLW31SN161SQ2	160 (Typ.)	340	50	10 min.	125	0.4
DLW31SN900SQ2	90 (Typ.)	370	50	10 min.	125	0.3

Operating Temperature Range : -40°C to 85°C

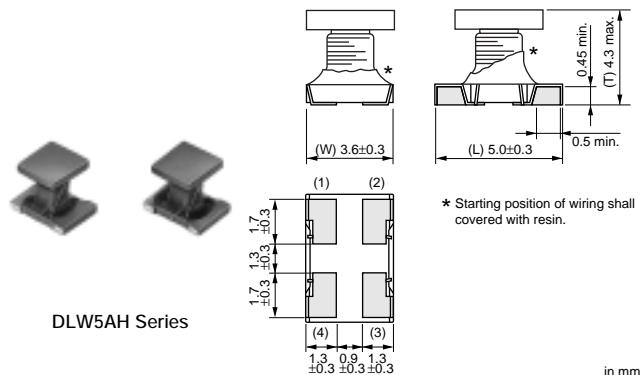

■ Equivalent Circuit

DLW31S

■ Impedance-Frequency Characteristics

16

On-Board Type (DC) EMI Suppression Filters (EMIFIL®)

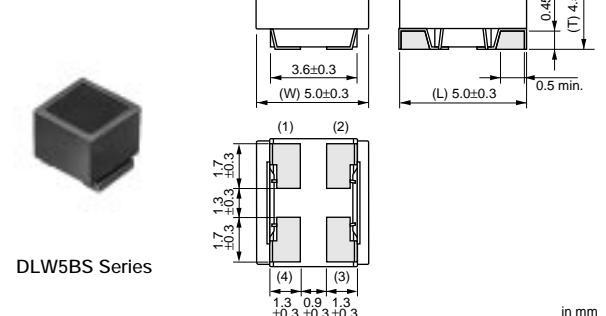

muRata

Chip Common Mode Choke Coils Winding Type for Large Current DLW5AH/DLW5BS Series

The DLW5AH/5BS series is high performance wound type chip common mode choke coil.

■ Features

1. High impedance (maximum of 4000ohm at 100MHz : DLW5AH) enables great noise suppression.
2. Large rated current (maximum of 5A) is suitable for power line use.
3. DLW5AH/BS series does not damage high speed signal due to high coupling common mode choke coil structure.
4. Automatic mounting can be applied.



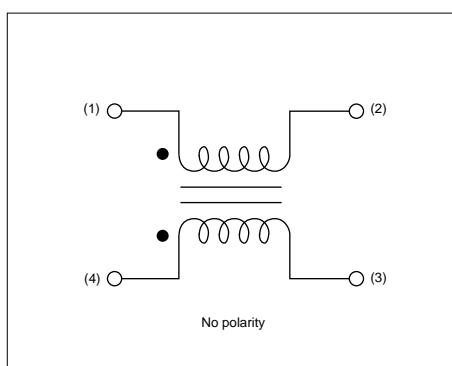
DLW5AH Series

in mm

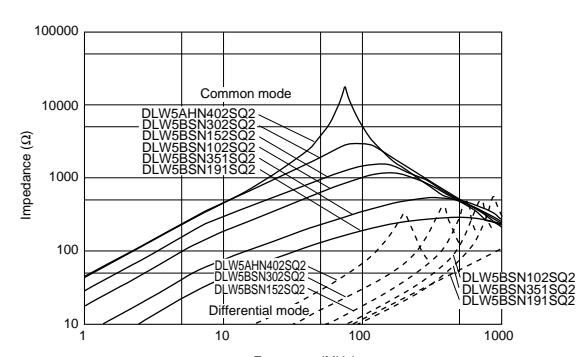
■ Applications

1. DC power lines in AC adapter of Portable equipment.
2. DC power lines of DC-DC converter, Battery charger.

DLW5BS Series


in mm

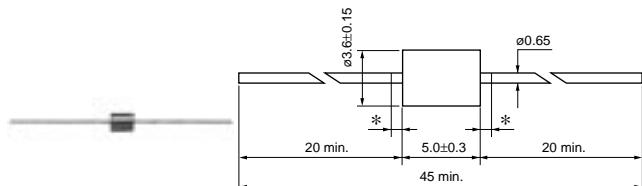
Part Number	Common Mode Impedance (at 100MHz, 20 degree C) (ohm)	Rated Current (mA)	Rated Voltage (Vdc)	Insulation Resistance (M ohm)	Withstand Voltage (Vdc)	DC Resistance (max.) (ohm)
DLW5AHN402SQ2	4000 (Typ.)	200	50	10 min.	125	3.0
DLW5BSN302SQ2	3000 (Typ.)	500	50	10 min.	125	0.3
DLW5BSN152SQ2	1500 (Typ.)	1000	50	10 min.	125	0.1
DLW5BSN102SQ2	1000 (Typ.)	1500	50	10 min.	125	0.06
DLW5BSN351SQ2	350 (Typ.)	2000	50	10 min.	125	0.04
DLW5BSN191SQ2	190 (Typ.)	5000	50	10 min.	125	0.02


Operating Temperature Range : -25°C to 85°C

17

■ Equivalent Circuit

■ Impedance-Frequency (Typical)

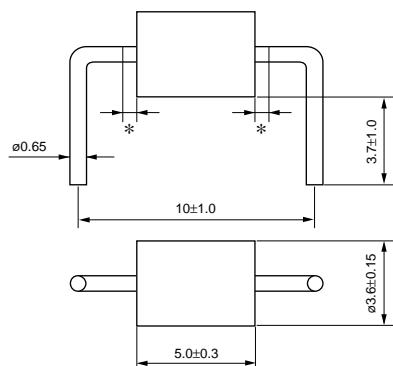

On-Board Type (DC) EMI Suppression Filters (EMIFIL®)

muRata

Ferrite Beads Inductors BL01/BL02/BL03 Series

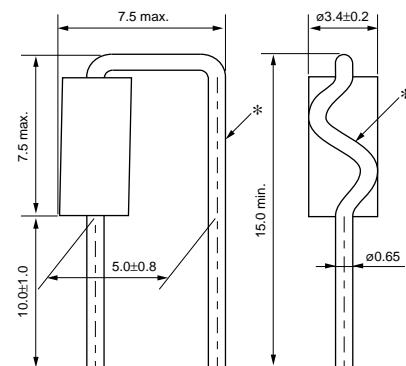
■ Features

BL01/02/03 series are ferrite beads with lead wire to produce a high frequency loss for suppression of noise. Simple construction and easy-to-use. Effective for low impedance circuits such as of power supply and ground. Effective also for preventing overshoot and undershoot of digital signal in clock or the like, and suppressing of higher harmonic wave. Suitable for prevention of abnormal oscillation at high frequency amplifying circuit.

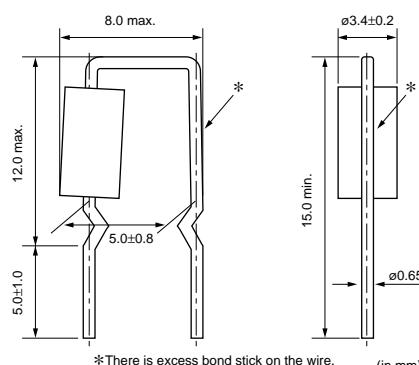

*Coating extending on leads : 1.5 max.

BL01RN1A1D2B

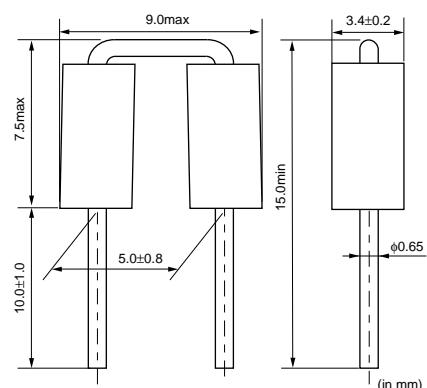
(in mm)


BL01RN1A1D2B

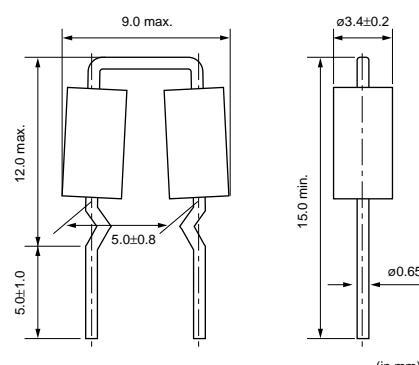
*Coating extending on leads : 1.5 max. (in mm)


BL02RN1R2M2B

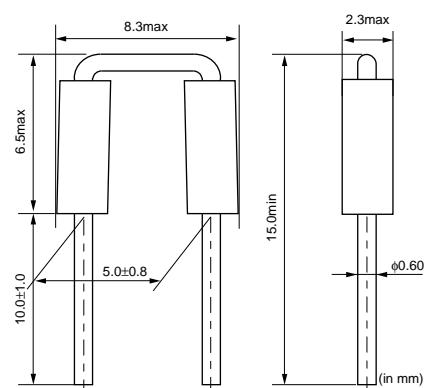
*There is excess bond stick on the wire. (in mm)


BL02RN1R3J2B

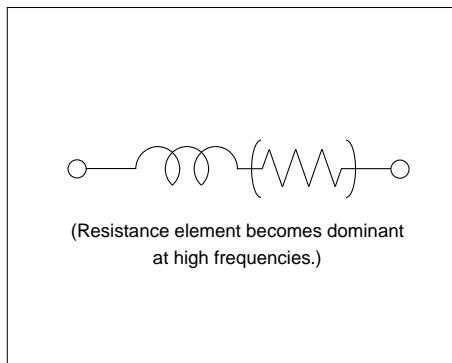
*There is excess bond stick on the wire. (in mm)


BL02RN2R1M2B

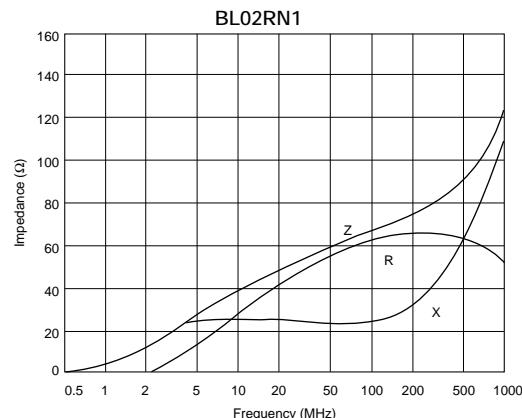
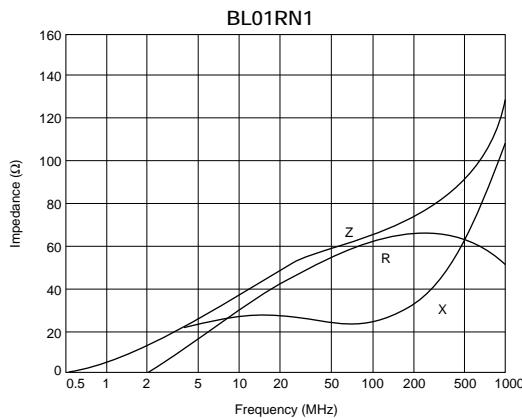
(in mm)


BL02RN2R3J2B

(in mm)

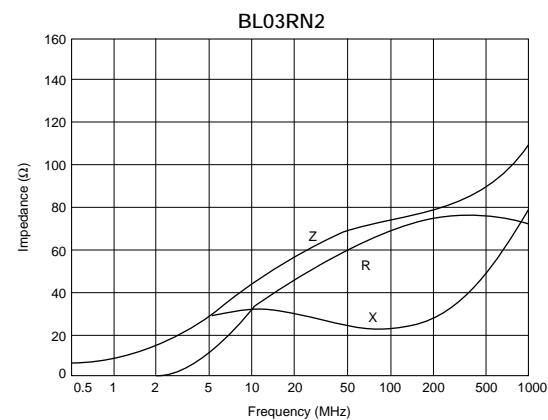
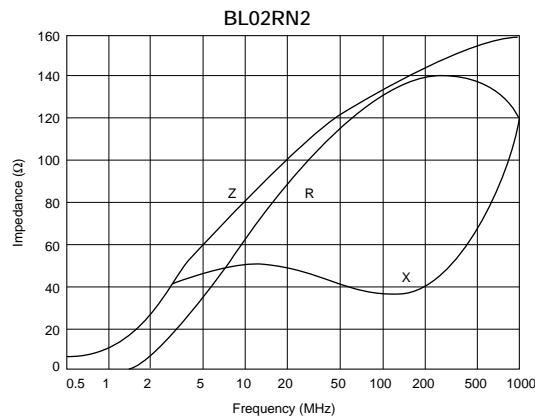

BL03RN2R1M1B

(in mm)



Part Number	Rated Current (A)	Operating Temperature Range (°C)
BL01RN1A1D2B	7	-40 to 85
BL01RN1A1E1A	6	-40 to 85
BL01RN1A1F1J	6	-40 to 85
BL01RN1A2A2B	7	-40 to 85
BL02RN1R2M2B	7	-40 to 85
BL02RN1R2N1A	6	-40 to 85
BL02RN1R2P1A	6	-40 to 85
BL02RN1R2Q1A	6	-40 to 85
BL02RN1R3J2B	7	-40 to 85
BL02RN1R3N1A	6	-40 to 85
BL02RN2R1M2B	7	-40 to 85
BL02RN2R1N1A	6	-40 to 85
BL02RN2R1P1A	6	-40 to 85
BL02RN2R1Q1A	6	-40 to 85
BL02RN2R3J2B	7	-40 to 85
BL02RN2R3N1A	6	-40 to 85
BL03RN2R1M1B	6	-40 to 85
BL03RN2R1N1A	6	-40 to 85
BL03RN2R1P1A	6	-40 to 85
BL03RN2R1Q1A	6	-40 to 85

■ Equivalent Circuit

18



■ Impedance-Frequency Characteristics

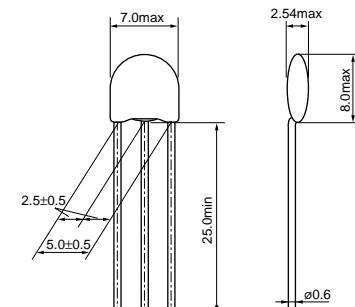
Continued on the following page.

Continued from the preceding page.

■ Impedance-Frequency Characteristics

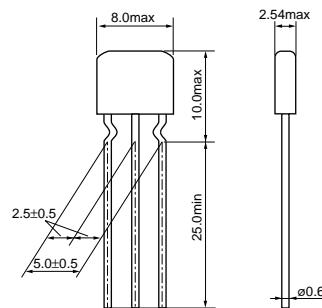
On-Board Type (DC) EMI Suppression Filters (EMIFIL®)

muRata

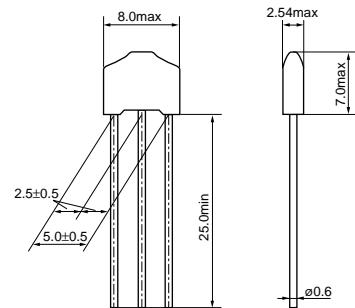

Disc Type EMIFIL® DSN6/DSS6 Series

■ Features

DS_6 is compact, high performance lead type EMI suppression filter which can be mounted 2.54mm pitch. Its 3-terminal structure enables nice high frequency performance.


DSN6_Q55B Series

(in mm)

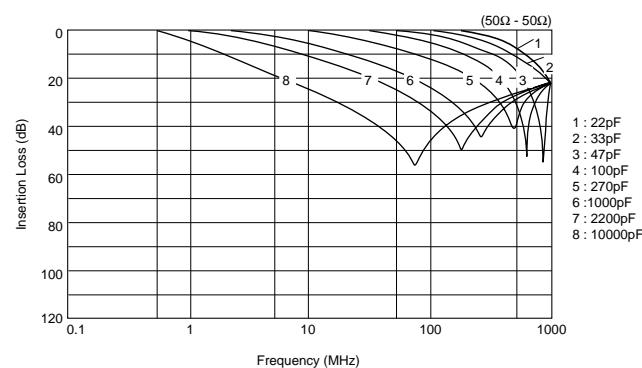

DSS6_T55B Series
Incrimp Type

(in mm)

DSS6_Q55B Series
Straight Type


(in mm)

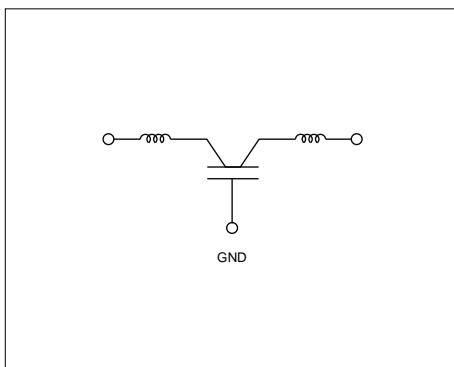
DSN6 Series


Part Number	Capacitance (pF)	Rated Voltage (Vdc)	Rated Current (A)	Operating Temperature Range (°C)
DSN6NC51H220	22 +20%,-20%	50	6	-25 to 85
DSN6NC51H330	33 +20%,-20%	50	6	-25 to 85
DSN6NC51H470	47 +20%,-20%	50	6	-25 to 85
DSN6NC51H101	100 +20%,-20%	50	6	-25 to 85
DSN6NC51H271	270 +20%,-20%	50	6	-25 to 85
DSN6NC51H102	1000 +20%,-20%	50	6	-25 to 85
DSN6NC51H222	2200 +20%,-20%	50	6	-25 to 85
DSN6NZ81H103	10000 +80%,-20%	50	6	-10 to 60

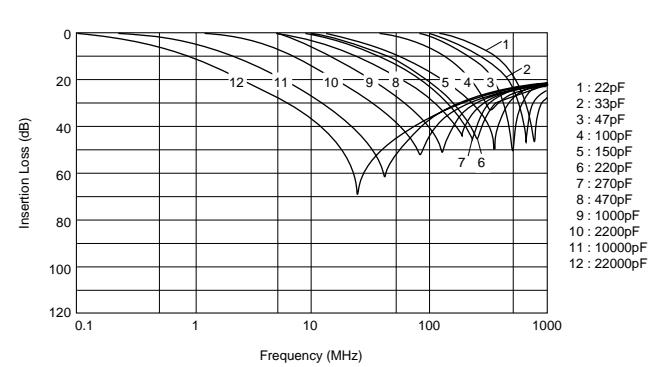
Please refer to Part Numbering for Type and Length of Lead.

■ Equivalent Circuit

■ Insertion Loss Characteristics (Typical)



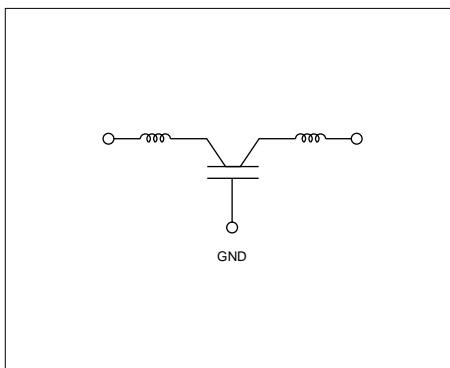
Built-in Ferrite Beads DSS6 Series Incrimp Type


Part Number	Capacitance (pF)	Rated Voltage (Vdc)	Rated Current (A)	Operating Temperature Range (°C)
DSS6NC52A220	22 +20%,-20%	100	6	-25 to 85
DSS6NC52A330	33 +20%,-20%	100	6	-25 to 85
DSS6NC52A470	47 +20%,-20%	100	6	-25 to 85
DSS6NC52A101	100 +20%,-20%	100	6	-25 to 85
DSS6NC52A151	150 +20%,-20%	100	6	-25 to 85
DSS6NC52A221	220 +20%,-20%	100	6	-25 to 85
DSS6NC52A271	270 +20%,-20%	100	6	-25 to 85
DSS6NC52A471	470 +20%,-20%	100	6	-25 to 85
DSS6NC52A102	1000 +20%,-20%	100	6	-25 to 85
DSS6NE52A222	2200 +80%,-20%	100	6	-25 to 85
DSS6NZ82A103	10000 +30%,-30%	100	6	-10 to 60
DSS6NF31C223	22000 +80%,-20%	16	6	-25 to 85

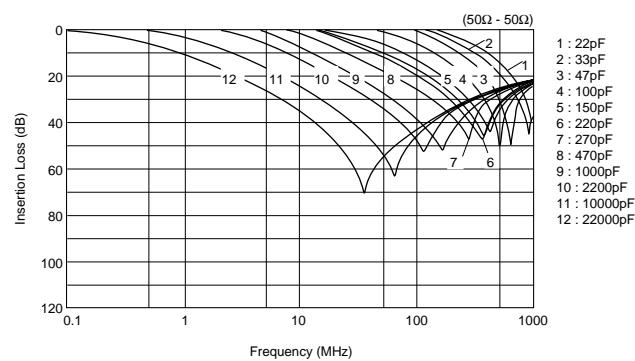
Please refer to Part Numbering for Type and Length of Lead.

■ Equivalent Circuit

■ Insertion Loss Characteristics (Typical)



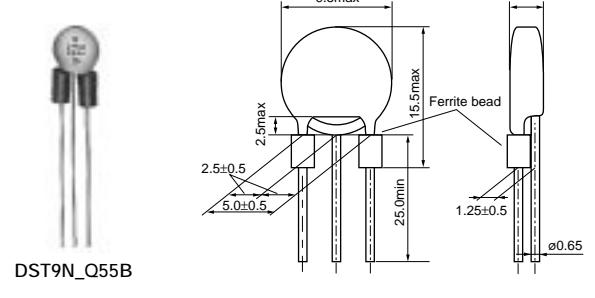
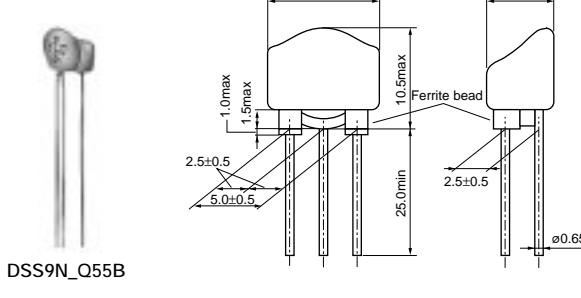
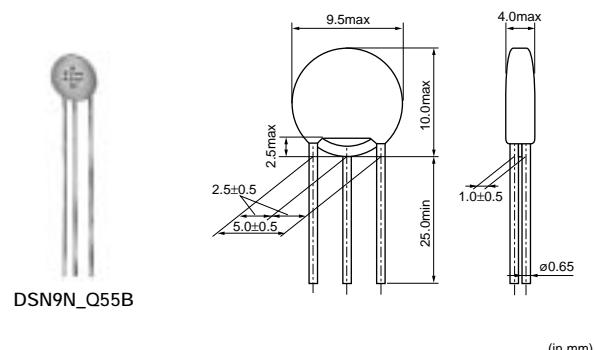
Built-in Ferrite Beads DSS6 Series Straight Type


Part Number	Capacitance (pF)	Rated Voltage (Vdc)	Rated Current (A)	Operating Temperature Range (°C)
DSS6NC52A220	22 +20%,-20%	100	6	-25 to 85
DSS6NC52A330	33 +20%,-20%	100	6	-25 to 85
DSS6NC52A470	47 +20%,-20%	100	6	-25 to 85
DSS6NC52A101	100 +20%,-20%	100	6	-25 to 85
DSS6NC52A151	150 +20%,-20%	100	6	-25 to 85
DSS6NC52A221	220 +20%,-20%	100	6	-25 to 85
DSS6NC52A271	270 +20%,-20%	100	6	-25 to 85
DSS6NC52A471	470 +20%,-20%	100	6	-25 to 85
DSS6NC52A102	1000 +20%,-20%	100	6	-25 to 85
DSS6NE52A222	2200 +80%,-20%	100	6	-25 to 85
DSS6NZ82A103	10000 +30%,-30%	100	6	-10 to 60
DSS6NF31C223	22000 +80%,-20%	16	6	-25 to 85

Please refer to Part Numbering for Type and Length of Lead.

■ Equivalent Circuit

■ Insertion Loss Characteristics (Typical)

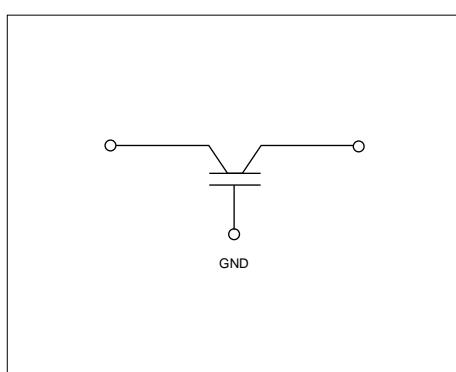



On-Board Type (DC) EMI Suppression Filters (EMIFIL®)

muRata

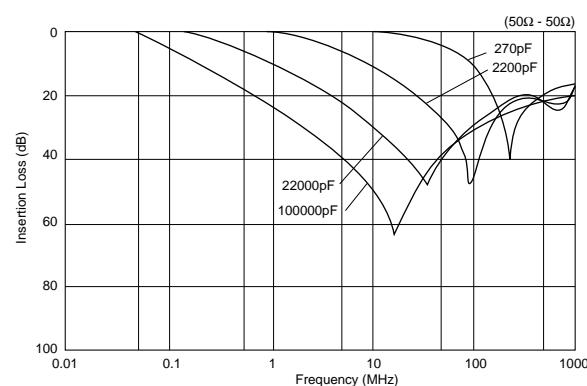
Disc Type EMIFIL® Broad Type DSN9/DSS9/DST9 Series

■ Features

DS_9 is basic type EMI suppression filter which can obtain high insertion loss in wide frequency range. Its 3-terminal structure enables nice high frequency performance. DSS9NP32A222/DSS9NT31H223 are low distortion type for audio circuit.


DSN9 Series

Part Number	Capacitance (pF)	Rated Voltage (Vdc)	Rated Current (A)	Operating Temperature Range (°C)
DSN9NC52A271	270 +20%, -20%	100	7	-25 to 85
DSN9NC52A222	2200 +20%, -20%	100	7	-25 to 85
DSN9NC51H223	22000 +50%, -20%	50	7	-25 to 85
DSN9NC51C104	100000 +20%, -20%	16	7	-25 to 85


Rated current is 6A for taping type.

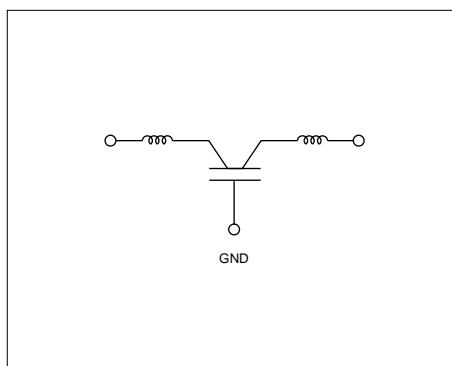
Please refer to Part Numbering for Type and Length of Lead.

■ Equivalent Circuit

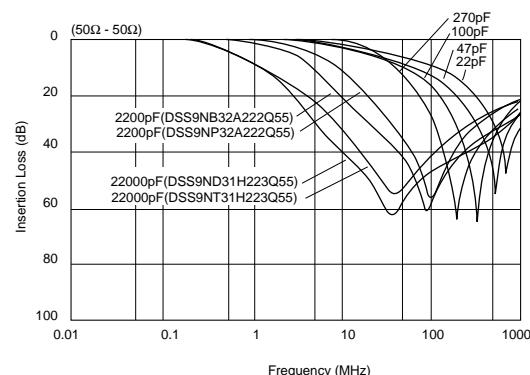
■ Insertion Loss Characteristics (Typical)

muRata

Built-in Ferrite Beads DSS9 Series


Part Number	Capacitance (pF)	Rated Voltage (Vdc)	Rated Current (A)	Operating Temperature Range (°C)
DSS9NC52A220	22 +20%, -20%	100	7	-25 to 85
DSS9NC52A470	47 +20%, -20%	100	7	-25 to 85
DSS9NC52A101	100 +20%, -20%	100	7	-25 to 85
DSS9NC52A271	270 +20%, -20%	100	7	-25 to 85
DSS9NC52A222	2200 +20%, -20%	100	7	-25 to 85
DSS9NP32A222	2200 +20%, -20%	100	7	-25 to 85
DSS9NC51H223	22000 +50%, -20%	50	7	-25 to 85
DSS9NT31H223	22000 +50%, -20%	50	7	-25 to 85

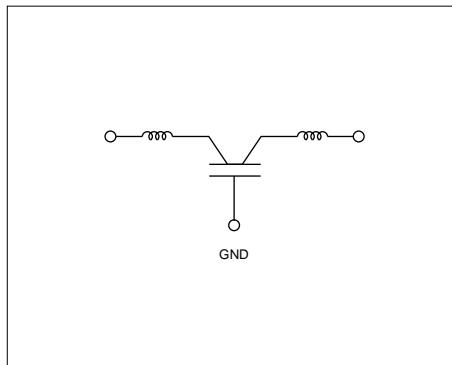
Rated current is 6A for taping type.


DSS9NP32A222Q55B/DSS9NT31H223Q55B are low distortion type for audio IF circuits.

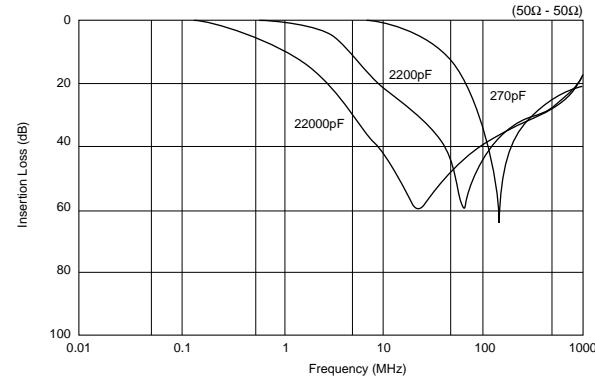
Please refer to Part Numbering for Type and Length of Lead.

■ Equivalent Circuit

■ Insertion Loss Characteristics (Typical)


With Ferrite Beads DST9 Series

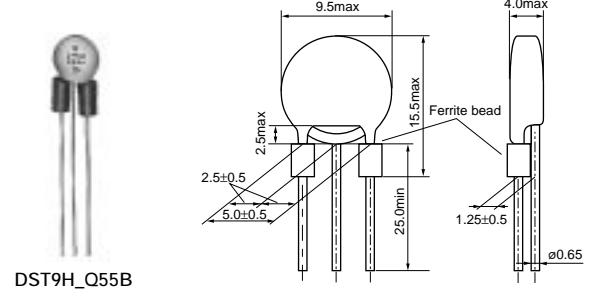
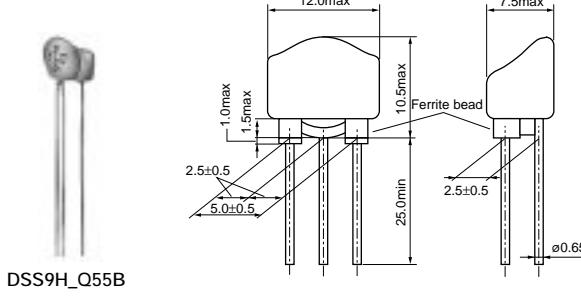
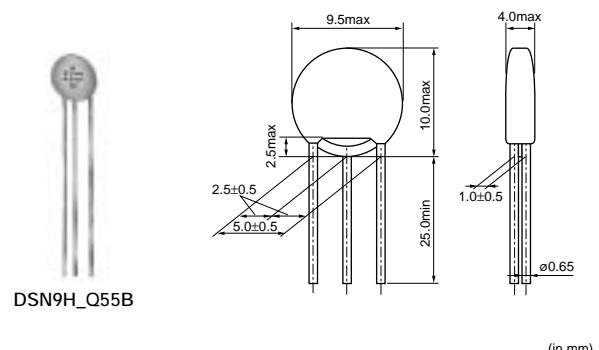
Part Number	Capacitance (pF)	Rated Voltage (Vdc)	Rated Current (A)	Operating Temperature Range (°C)
DST9NC52A271	270 +20%, -20%	100	7	-25 to 85
DST9NC52A222	2200 +20%, -20%	100	7	-25 to 85
DST9NC51H223	22000 +50%, -20%	50	7	-25 to 85


Rated current is 6A for taping type.

Please refer to Part Numbering for Type and Length of Lead.

■ Equivalent Circuit

■ Insertion Loss Characteristics (Typical)

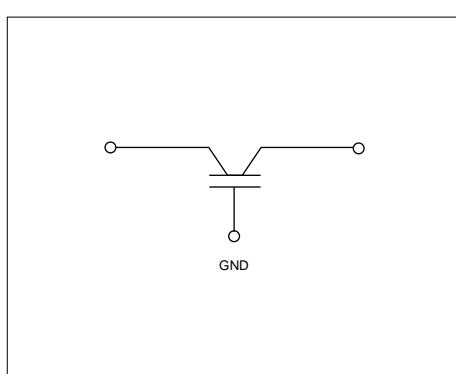



On-Board Type (DC) EMI Suppression Filters (EMIFIL®)

muRata

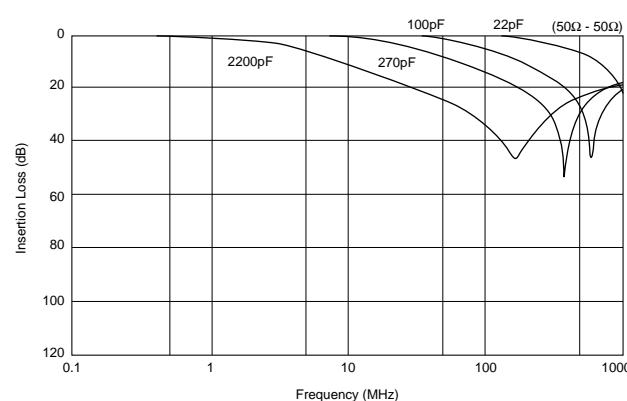
Disc Type EMIFIL® Heavy-duty Type DSN9H/DSS9H/DST9H Series

■ Features

DS_9H is basic type EMI suppression filter which can obtain high insertion loss in wide frequency range. Its 3-terminal structure enables nice high frequency performance. High rated voltage of 250Vdc and wide operating temperature range from -40 degree C to 105 degree C are suitable for high reliability circuits.



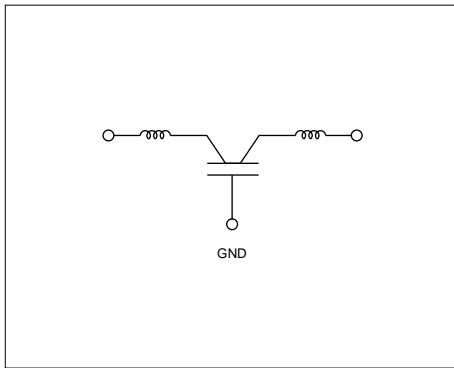
DSN9H Series


Part Number	Capacitance (pF)	Rated Voltage (Vdc)	Rated Current (A)	Operating Temperature Range (°C)
DSN9HB32E220	22 +20%,-20%	250	6	-40 to 105
DSN9HB32E101	100 +20%,-20%	250	6	-40 to 105
DSN9HB32E271	270 +20%,-20%	250	6	-40 to 105
DSN9HB32E222	2200 +20%,-20%	250	6	-40 to 105

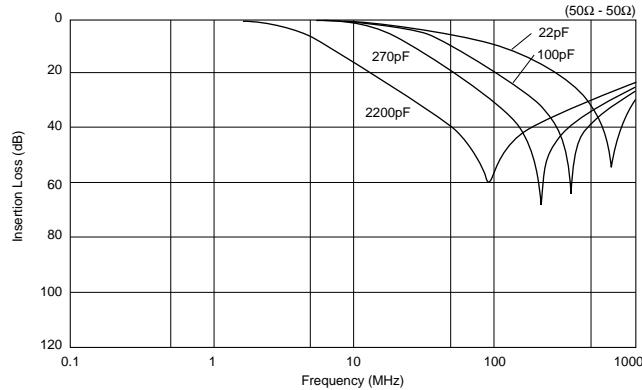
Please refer to Part Numbering for Type and Length of Lead.

■ Equivalent Circuit

■ Insertion Loss Characteristics (Typical)



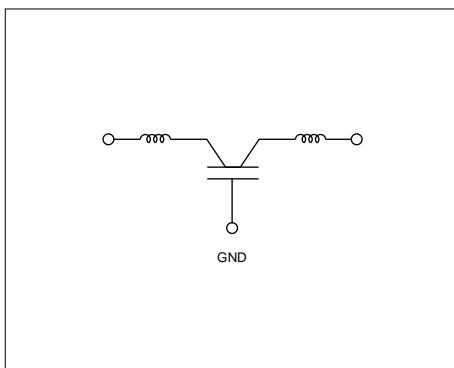
Built-in Ferrite Beads DSS9H Series


Part Number	Capacitance (pF)	Rated Voltage (Vdc)	Rated Current (A)	Operating Temperature Range (°C)
DSS9HB32E220	22 +20%,-20%	250	6	-40 to 105
DSS9HB32E101	100 +20%,-20%	250	6	-40 to 105
DSS9HB32E271	270 +20%,-20%	250	6	-40 to 105
DSS9HB32E222	2200 +20%,-20%	250	6	-40 to 105

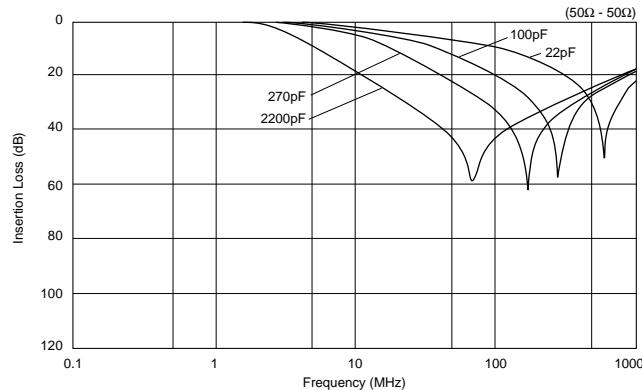
Please refer to Part Numbering for Type and Length of Lead.

■ Equivalent Circuit

■ Insertion Loss Characteristics (Typical)



With Ferrite Beads DST9H Series

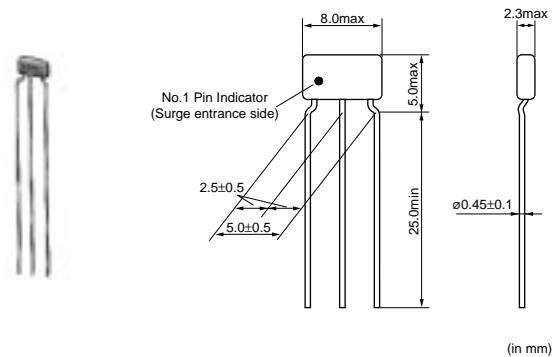

Part Number	Capacitance (pF)	Rated Voltage (Vdc)	Rated Current (A)	Operating Temperature Range (°C)
DST9HB32E220	22 +20%,-20%	250	6	-40 to 105
DST9HB32E101	100 +20%,-20%	250	6	-40 to 105
DST9HB32E271	270 +20%,-20%	250	6	-40 to 105
DST9HB32E222	2200 +20%,-20%	250	6	-40 to 105

Please refer to Part Numbering for Type and Length of Lead.

■ Equivalent Circuit

■ Insertion Loss Characteristics (Typical)

On-Board Type (DC) EMI Suppression Filters (EMIFIL®)


muRata

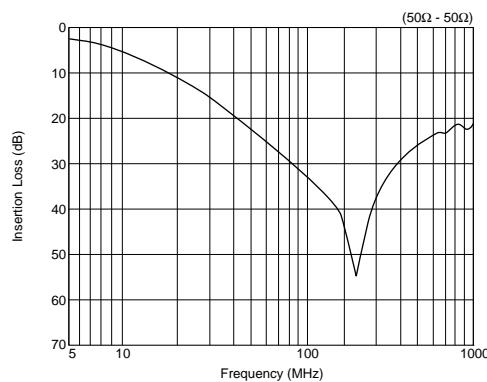
Chip EMIGUARD® (EMIFIL® with Varistor Function) VFR3V/VFS6V/VFS9V Series

for Semiconductor Protection VFR3V Series

■ Features

The VFR3V series is designed for ESD surge protection of IC. It absorbs ESD surge rushed into IC's I/O terminal efficiently.

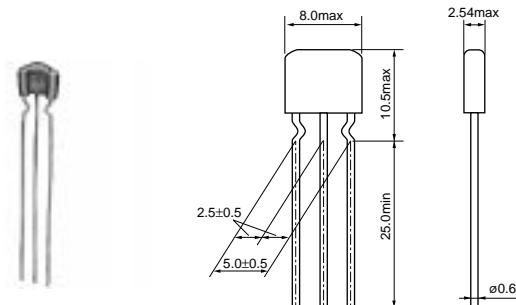
(in mm)


■ Applications

Elimination of noise and protection of semiconductors in office equipments, including computers and peripheral equipments, copy machines, and communication terminals.

Part Number	Rated Voltage (Vdc)	Varistor Voltage (Vdc)	Capacitance (pF)	Rated Current (mA)	Peak Pulse Current (A)	Operating Temperature Range (°C)
VFR3VD31E131	25	50 +20%,-20%	130 +20%,-20%	20	15	-25 to 85

Please refer to Part Numbering for Type and Length of Lead.

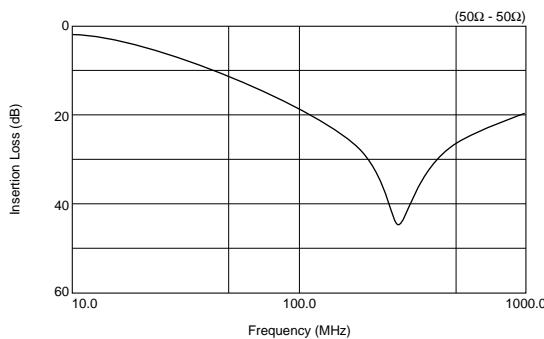

■ Insertion Loss Characteristics

for Signal-Line VFS6V Series

■ Features

The VFS6V series is designed for surge protection of signal line. It protects electric circuit from surges such as static electricity and suppress EMI noise. Built-in ferrite bead gives excellent EMI suppression.

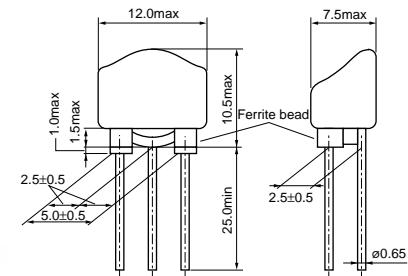
(in mm)


■ Applications

Elimination of noise and protection of electric circuit in office equipments, including computers and peripheral equipments, copy machines, and communication terminals.

Part Number	Rated Voltage (Vdc)	Varistor Voltage (Vdc)	Capacitance (pF)	Rated Current (A)	Peak Pulse Current (A)	Operating Temperature Range (°C)
VFS6VD81E221	25	50 +20%,-20%	220 +20%,-20%	6	100	-40 to 105

Please refer to Part Numbering for Type and Length of Lead.


■ Insertion Loss Characteristics

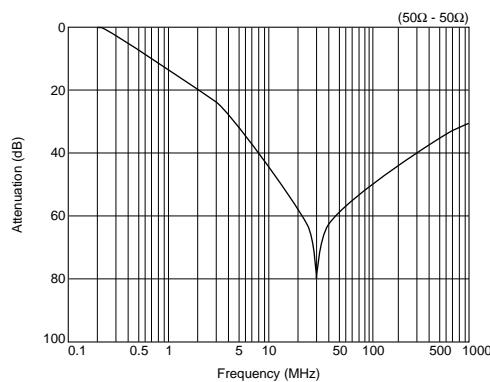
for Large-Current VFS9V Series

■ Features

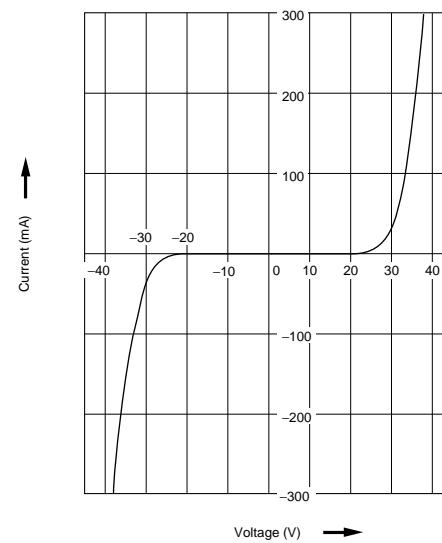
The VFS9V series is designed for surge protection of power supply line. It protects electric circuit from surges such as static electricity and suppress EMI noise. Its large capacitance value enables high insertion loss for EMI noise.

(in mm)

■ Applications


For circuit protection and noise suppression in electronics equipment such as computers and DC motors and in electronics systems installed in cars such as car audio equipment and engine controllers.

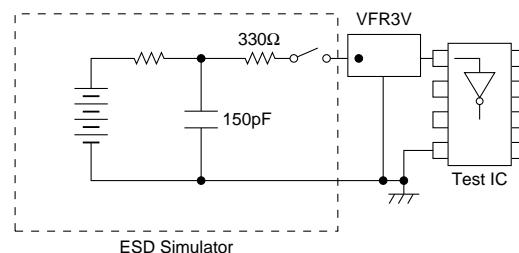
Part Number	Rated Voltage (Vdc)	Varistor Voltage (Vdc)	Capacitance (pF)	Rated Current (A)	Operating Temperature Range (°C)
VFS9VD31B223	12	22 +20%, -20%	22000 +50%, -20%	7	-40 to 100


Rated current: 6A (Taping Type)/7A (Bulk Type)

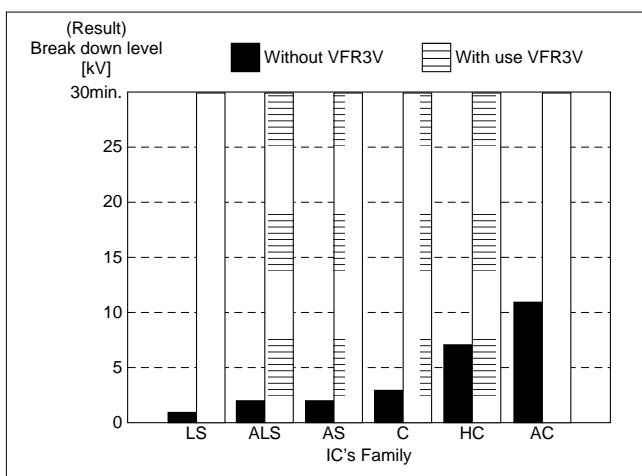
Please refer to Part Numbering for Type and Length of Lead.

■ Insertion Loss Characteristics

■ Voltage-Current Characteristics

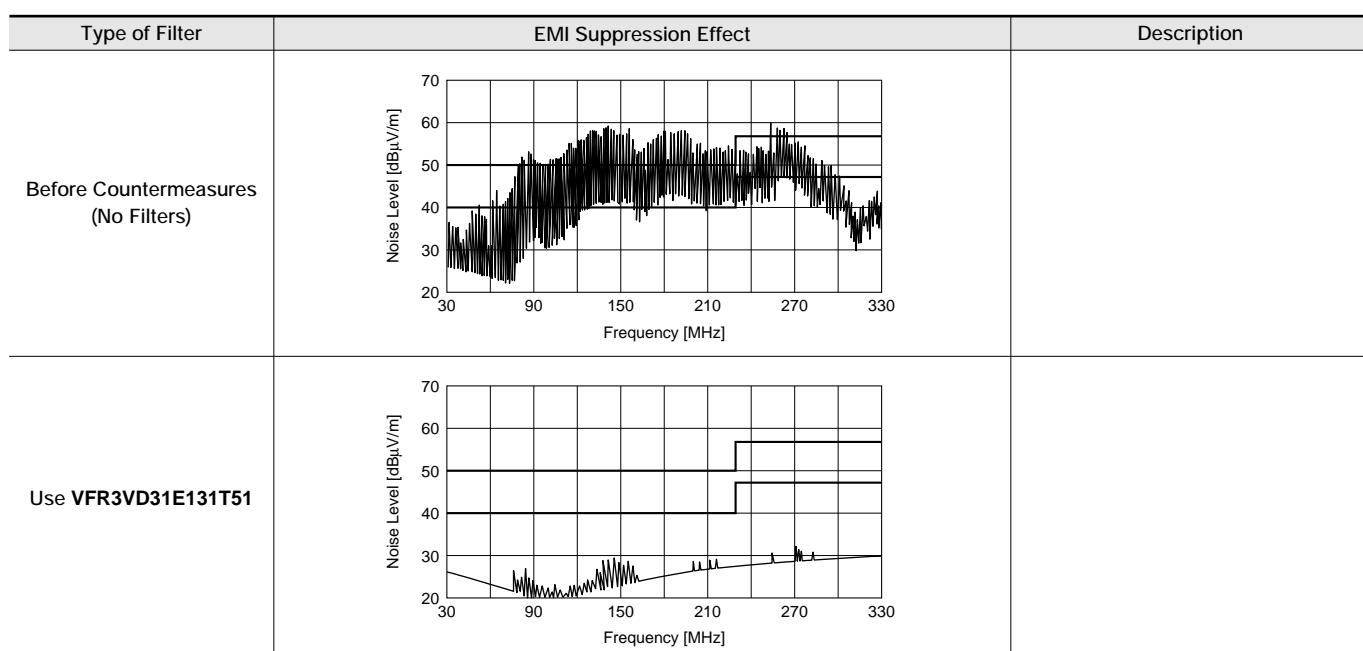
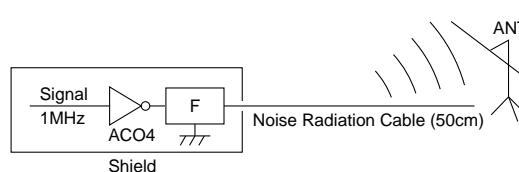

Noise Suppression Effect of VFR/VFS Series

■ Example of IC Protection

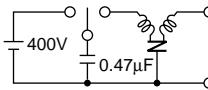
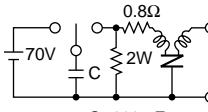

● Testing Method

1. Put ESD surge to IC (7404 family) input terminal with ESD simulator based on IEC 801-2.
2. Check IC's operation.
3. If IC's operation is normal, increase ESD voltage in 1kV step.
4. Continue above steps 1 to 3 till IC's operation become abnormal.

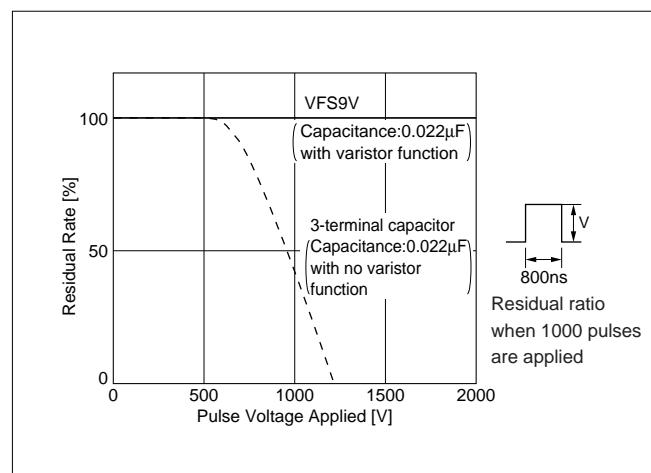
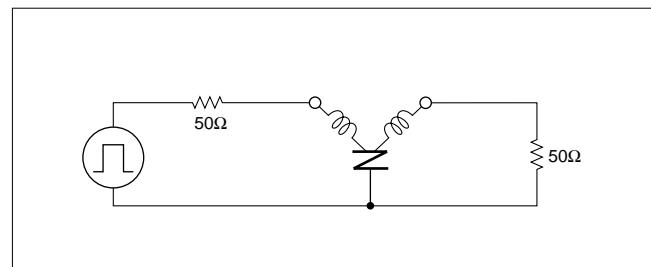
[Test Circuit]

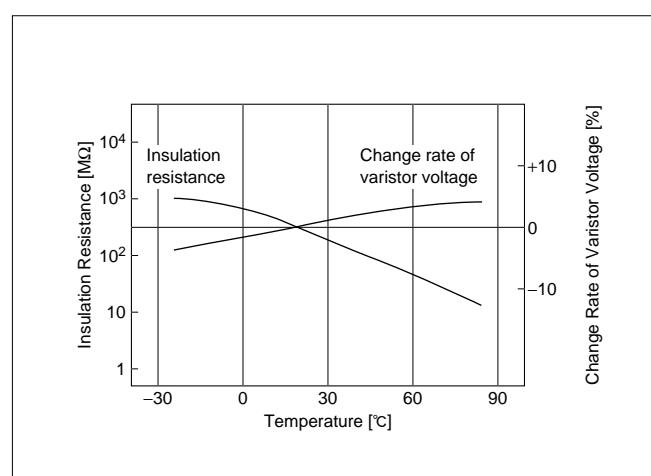
● Result



■ Example of EMI Suppression Effect

[Test Circuit]



Noise Suppression Effect of VFR/VFS Series

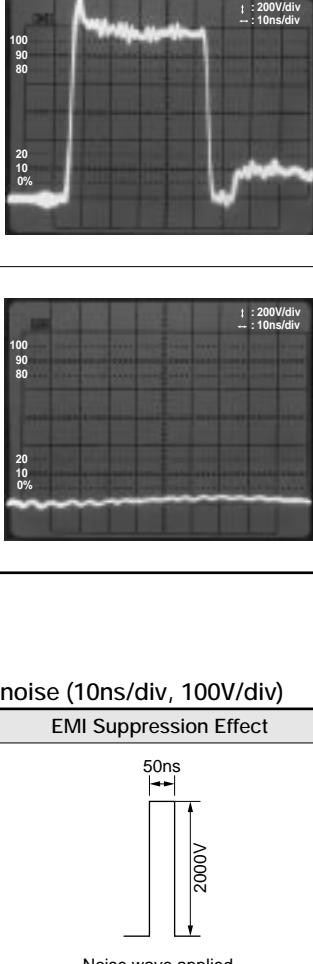
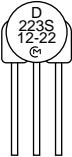
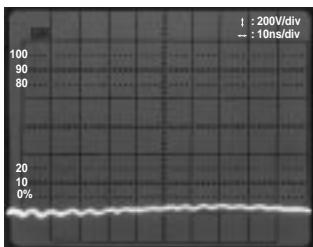
■ Features (VFS9V)


Items	Test methods	Rated values
Overload	1.4 times the varistor voltage (V_1) is applied for 5 minutes at room temperature.	
Surge Test (1)	At room temperature. Surge are applied are 10^5 times every 2 seconds. Then after 1 or 2 hours, the sample is measured.	
Surge Test (2)	At room temperature. Capacitor "C" is changed with 70V, then discharged to apply the voltage to the sample. Tested once (resuming JASO A-1).	
High Temperature Load	At a temperature of $85 \pm 3^\circ\text{C}$. The varistor voltage V_1 is continuously applied to the sample for 1000 to 1024 hours. Then it is left at room temperature, for 4 to 24 hours before measuring.	$*V_1$: Voltage when 1mA is applied

■ Pulse-Voltage Breakdown Characteristic (VFS9V)

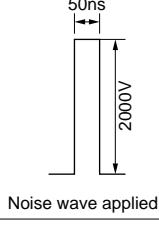
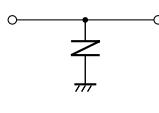
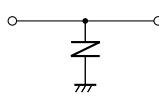
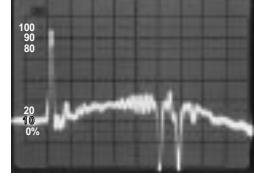
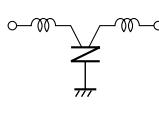
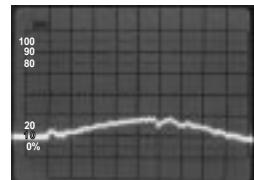
The VFS9V EMIGUARD® use a self healing varistor-capacitor, so that it can be used under a 500 to 600V surge which would break conventional disk type EMI filters. As shown in figure below the EMIGUARD® withstands 2000V impulses applied 1000 times.

■ Temperature Characteristics of Varistor Voltage-Insulation Resistance (VFS9V)

Continued on the following page.

Noise Suppression Effect of VFR/VFS Series

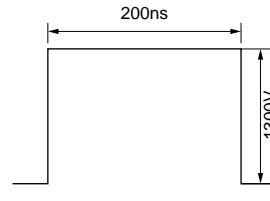
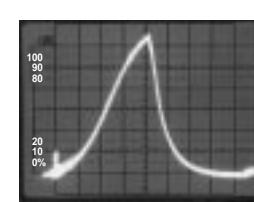
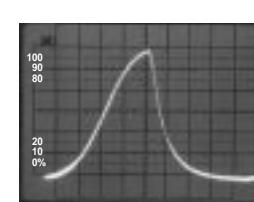
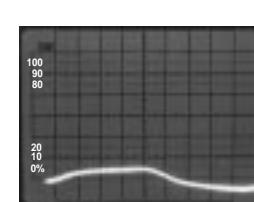






Continued from the preceding page.

■ Noise Absorption Effect of EMIGUARD®

Type of Filter	EMI Suppression Effect	Description
without EMIGUARD®		Waveform when EMIGUARD® is not used. (Surge from a noise simulator)
with EMIGUARD® 		Waveform after the noise passed through EMIGUARD®. Little noise is recorded.

■ Comparative Data

1. Absorption of quick-rising, high-frequency noise (10ns/div, 100V/div)





Type of Filter	EMI Suppression Effect	Description
without Filters		
Conventional varistor 		As with the 2-terminal capacitor.
2-terminal capacitor (with varistor function) 		The 2-terminal capacitor is influenced by lead line inductance, leaving behind some of the rising and falling edges. The residual noise can cause system to malfunction.
VFS9V 		The 3-terminal structure eliminates most of the lead line inductance. This allows the VFS9V to completely absorb the rising and falling edges of the applied pulses.

Continued on the following page.

Noise Suppression Effect of VFR/VFS Series

Continued from the preceding page.

2. Absorption of wide-pulse noise (50ns/div, 200V/div)

Type of Filter	EMI Suppression Effect	Description
without Filters	 Noise wave applied	
2-terminal capacitor		In case of capacitors, the voltage of the residual surge, 1300V is higher than that of the above example. The wave height is almost the same as the original.
3-terminal capacitor (with ferrite bead)		Conventional EMI filters do not work for wide-pulse noise because capacitors are saturated. In this example, the residual 1200V surge can cause system to breakdown.
VFS9V		Bypassing high-voltage, the varistor-capacitor.

On-Board Type (DC) EMI Suppression Filters (EMIFIL®)

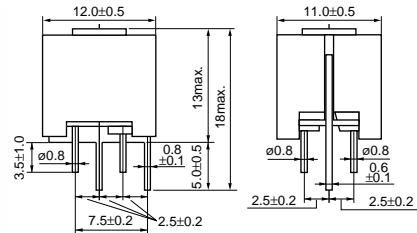
muRata

Block Type EMIFIL® BNX Series

BNX Series

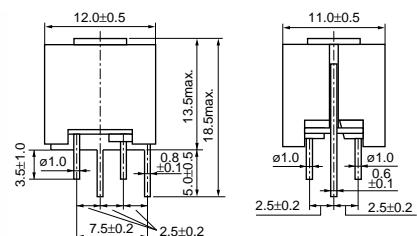
The block type "EMIFIL" BNX series incorporates through-type capacitor, monolithic chip capacitors and bead. The BNX is high performance for use in DC power circuits.

■ Features


1. The filter enables obtain high insertion loss in wide frequency range from 0.5MHz to 1GHz.
2. The only one filter block enables suppress noise of both the positive and negative lines.
3. There are no connection routes in the current circuits, thus ensuring highly reliable performance.

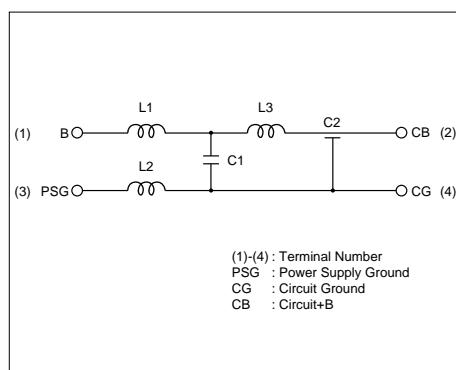
■ Applications

Noise elimination from DC power sources in a variety of switching power sources, engine control units, digital equipment and computer terminals.

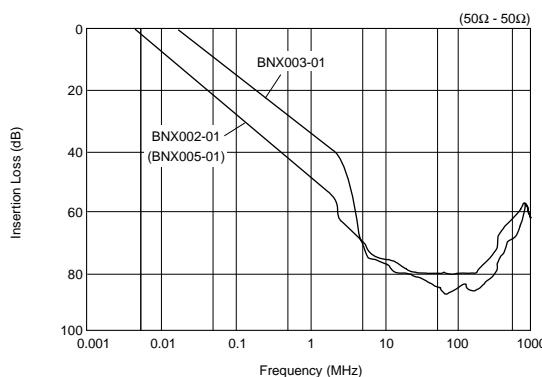

BNX002/BNX003

(in mm)

BNX005

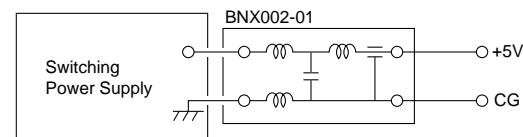


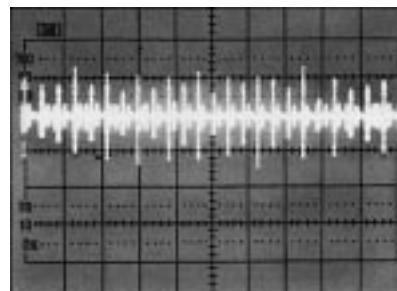
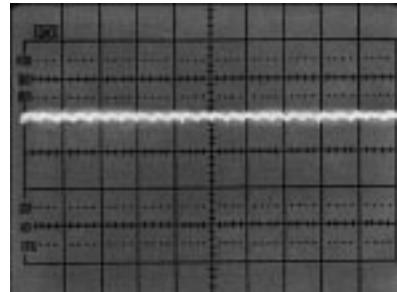
(in mm)


Part Number	Rated Voltage (Vdc)	Withstand Voltage (Vdc)	Rated Current (A)	Insulation Resistance (min.) (M ohm)	Insertion Loss
BNX002-01	50	125	10	100	1MHz to 1GHz:40dB min.(20 to 25°C line impedance=50 ohm)
BNX003-01	150	375	10	100	5MHz to 1GHz:40dB min.(20 to 25°C line impedance=50 ohm)
BNX005-01	50	125	15	100	1MHz to 1GHz:40dB min.(20 to 25°C line impedance=50 ohm)

Operating Temperature Range : -30°C to 85°C

■ Equivalent Circuit


■ Insertion Loss Characteristics (Typical)

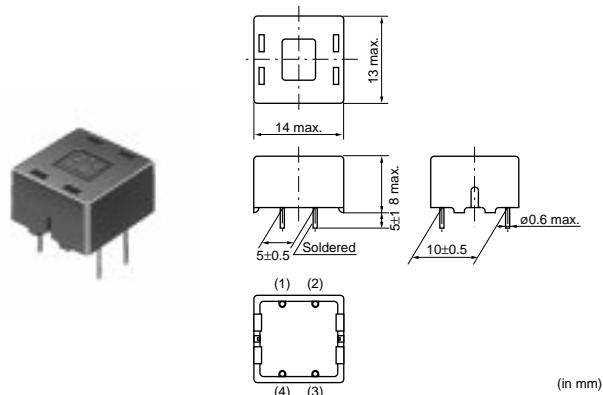



Noise Suppression Effect of BNX Series

■ Suppression of DC Side Ripple of the Switching Power Supply

[Testing Circuit]

Type of Filter	EMI Suppression Effect	Description
When BNX002 is not used		High frequency noise, max. 0.5V, can be seen.
When BNX002 is used		Noise can be almost suppressed by BNX002.


On-Board Type (DC) EMI Suppression Filters (EMIFIL®)

muRata

Common Mode Choke Coils (for DC Line) PLT09H Series

PLT09H Series

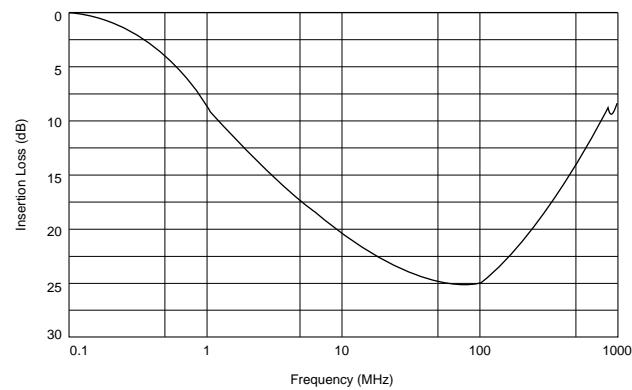
The PLT09H series is common mode choke coil for DC line. It is effective against the common mode noise that can cause radiative noise in power supply lines and interface lines. The additional normal mode inductance enables high suppression effect to radiation noise.

■ Features

1. This is a wide frequency range type, applicable in applications ranging from a few MHz to several 100MHz.
2. It features a low-profile design.

■ Applications

1. Noise suppression of SW power supply, DC-DC converter.
2. DC power lines in AC adapter of Portable equipment.


Part Number	Common Mode Inductance (μ H)	Rated Current (A)	Rated Voltage (Vdc)	Withstand Voltage (Vdc)
PLT09HN2003R0P1	20 min.	3	50	125

Operating Temperature Range : -40°C to 85°C

■ Equivalent Circuit

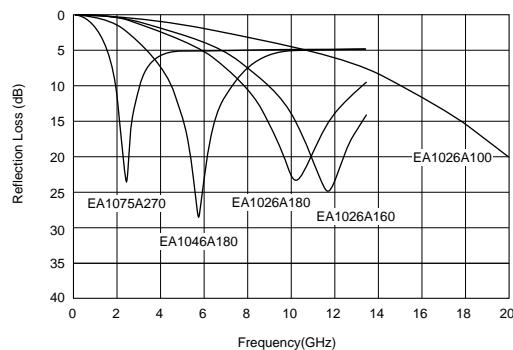
■ Insertion Loss Characteristics (Typical)

On-Board Type (DC) EMI Suppression Filters (EMIFIL®)

muRata

Microwave Absorbers EA10/EA20/EA21 Series

EA10 Series

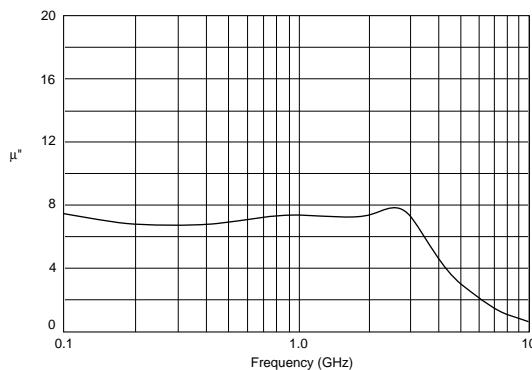

■ Features

1. Excellent elasticity and durability with silicon rubber.
2. Suitable for prevention abnormal oscillation in high frequency module, suppression spurious spectra and prevention interference between circuits.
3. Holding easily in equipments with adhesive tape.

Part Number	Applicable Frequency	Thickness (mm)	Flame Resisting	Halogen	Operating Temperature Range
EA1026A100	20.0 GHz (Typ.)	1.0 (Typ.)	-	Halogen Free	-40 to +80 °C
EA1026A160	11.5 GHz (Typ.)	1.6 (Typ.)	-	Halogen Free	-40 to +80 °C
EA1026A180	10.0 GHz (Typ.)	1.8 (Typ.)	-	Halogen Free	-40 to +80 °C
EA1046A180	5.8 GHz (Typ.)	1.8 (Typ.)	UL94V-0	Halogen Free	-40 to +80 °C
EA1075A270	2.5 GHz (Typ.)	2.7 (Typ.)	UL94V-0	Halogen Free	-40 to +80°C

■ Refraction Loss

EA20/21 Series


■ Features

1. High-micro and High-loss characteristics with magnetically shielded can suppress noise in wide frequency band for digital equipments.
2. Thin (0.2mm-1.0mm) and flexible sheet makes easy handling in assembly process.
3. Holding easily in equipments with adhesive tape.
4. EA20xx series : Non Halogen type
EA21xx series : UL94V-0 certified material is used.

Part Number	Applicable Frequency	Thickness (mm)	Flame Resisting	Halogen	Operating Temperature Range
EA2070A020	2.5GHz (Typ.)	0.2 (Typ.)	-	Halogen Free	-40 to +105 °C
EA2070A050	0.1 - 3.0 GHz (Typ.)	0.5 (Typ.)	-	Halogen Free	-40 to +105 °C
EA2070A100	0.1 - 3.0 GHz (Typ.)	1.0 (Typ.)	-	Halogen Free	-40 to +105 °C
EA2070B013	0.1 - 3.0 GHz (Typ.)	0.13 (Typ.)	-	Halogen Free	-40 to +105 °C
EA2070B020	0.1 - 3.0 GHz (Typ.)	0.2 (Typ.)	-	Halogen Free	-40 to +105 °C
EA2070B050	0.1 - 3.0 GHz (Typ.)	0.5 (Typ.)	-	Halogen Free	-40 to +105 °C
EA2100A020	0.1 - 3.0 GHz (Typ.)	0.2 (Typ.)	UL94V-0	-	-40 to +105 °C
EA2100A050	0.1 - 3.0 GHz (Typ.)	0.5 (Typ.)	UL94V-0	-	-40 to +105 °C
EA2100A100	0.1 - 3.0 GHz (Typ.)	1.0 (Typ.)	UL94V-0	-	-40 to +105 °C
EA2100B020	0.1 - 3.0 GHz (Typ.)	0.2 (Typ.)	UL94V-0	-	-40 to +105 °C
EA2100B050	0.1 - 3.0 GHz (Typ.)	0.5 (Typ.)	UL94V-0	-	-40 to +105 °C
EA2100B100	0.1 - 3.0 GHz (Typ.)	1.0 (Typ.)	UL94V-0	-	-40 to +105 °C

■ Magnetic Permeability-Reluctance (Typical)

Chip EMIFIL® ⚠Caution/Notice

■ ⚠Caution (Soldering and Mounting)

Give special attention when mounting chip "EMIFIL"
BLM_P/NFM_P series close to other product that
radiate heat. The excessive heat by other products
may cause deterioration of insulation resistance and
excessive heat at this product, resulting in the fire.

■ Notice (Storage and Operating Conditions)

< Operating Environment >

Do not use products in a chemical atmosphere such as
chlorine gas, acid or sulfide gas.

< Storage and Handling requirements >

1. Storage Period

BLM/BLA/VFM14R/DLP31S/DLM2HG series should be used
within 6 months, the other series should be used
within 12 months. Used the products which the
period after delivered solderability should be

checked if this period is exceeded.

2. Storage conditions

(1) Storage temperature : -10 to 40 C.

Relative humidity : 30 to 70%

Avoid sudden changes in temperature and
humidity.

(2) Do not store products in a chemical atmosphere
such as chlorine gas, acid or sulfide gas.

■ Notice (Rating)

Noize suppression levels resulting from MURATA's EMI
suppression filters "EMIFIL" may vary, depending on
the circuits and ICs used, type of noise, mounting
pattern, lead wire length, mounting location, and
other operating conditions. Be sure to check and
confirm in advance, the noise suppression effect of
each filter, in actual circuits,etc. before applying
the filter in a commercial-purpose equipment design.

■ Notice (Soldering and Mounting)

< Operating Environment >

Do not use products in a chemical atmosphere such as
chlorine gas, acid or sulfide gas.

< Storage and Handling requirements >

1. Storage Period

Products which inspected in Murata over 12 months
ago should be examined and used, which can be
confirmed with inspection No. marked on the
container.

Solderability should be checked if this period is

exceeded. (NFM41P/55P, VCM series should be used
within 6 months.)

2. Storage conditions

(1) Storage temperature : -10 to 40 C.

Relative humidity : 30 to 70%

Avoid sudden changes in temperature and
humidity.

(2) Do not store products in a chemical atmosphere
such as chlorine gas, acid or sulfide gas.

Lead Type EMIFIL® ⚠Caution/Notice

■ ⚠Caution (Rating)

Do not use products beyond the rated current and the rated voltage, or deterioration of the insulation resistance, excessive heat may catch fire.

■ ⚠Caution (Soldering and Mounting)

Mounting holes should be designed as specified in this specifications. Other design than shown in this specifications may cause cracks in ceramics which may lead to smoking or firing.

■ Notice (Storage and Operation Condition)

< Operating Environment >

1. Do not use products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.
2. Do not use products near water, oil or organic solvents. Avoid environment where dust or dirt may adhere to product.

< Concerned to "EMIGUARD" >

VFR3V series is designed only to absorb electro-static surges. Do not use this product to absorb large energy surges such as lighting or switching related surges.

< Storage and Handling Requirements >

1. Storage Period

Used the products which 12 months after delivered solderability should be checked if this period is exceeded.

2. Storage conditions

(1) Storage temperature : -10 to 40 C.

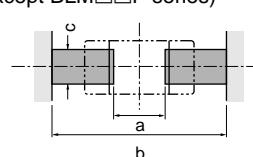
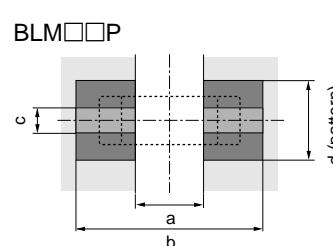
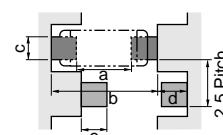
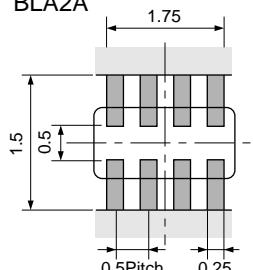
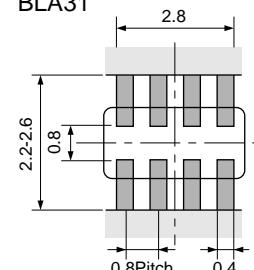
Relative humidity : 30 to 70%

Avoid sudden changes in temperature and humidity.

(2) Do not store products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.

■ Notice (Rating)

Noize suppression levels resulting from MURATA's EMI suppression filters "EMIFIL" may vary, depending on the circuits and ICs used, type of noise, mounting pattern, lead wire length, mounting location, and other operating conditions. Be sure to check and confirm in advance, the noise suppression effect of each filter, in actual circuits,etc. before applying the filter in a commercial-purpose equipment design.

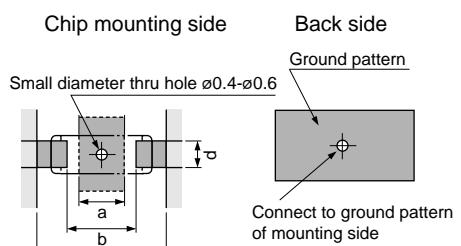
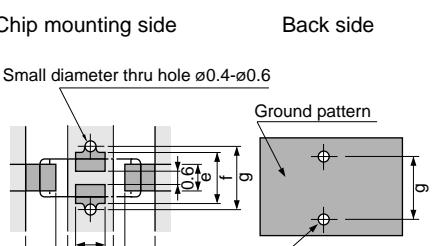
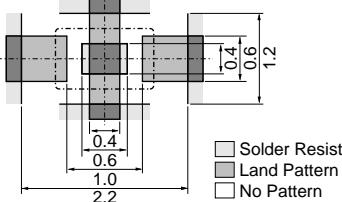
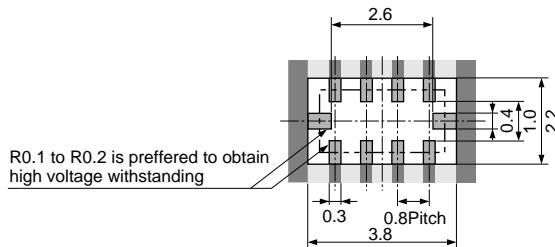
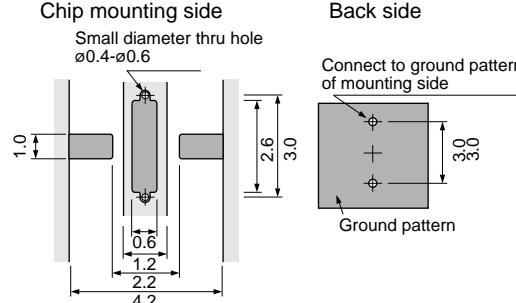





EMIFIL® (Soldering and Mounting)

1. Standard Land Pattern Dimensions

The capacitor type Chip EMIFIL® (NF□ series) / Chip EMIGUARD® (VFM series) suppress noise by conducting the high-frequency noise element to ground. Therefore, to obtain maximum performance from these filters, the ground pattern should be made as large as possible during the PCB design stage. As shown in the right, one side of the PCB is used for chip mounting, and the other is used for grounding.

Small diameter feedthrough holes are then used to connect the grounds on each side of the PCB. This reduces the high-frequency impedance of the grounding and maximizes the filter's performance. Please contact us if using thinner land pad than 18μm for NFM55P.

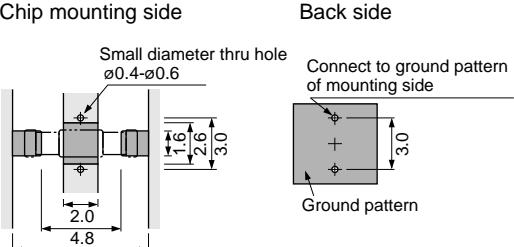
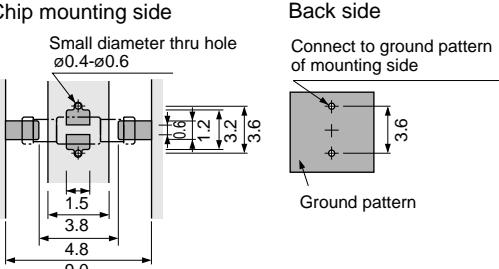
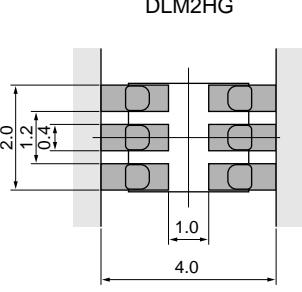
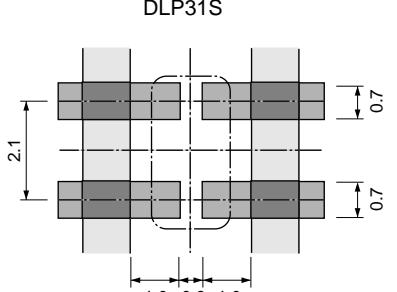
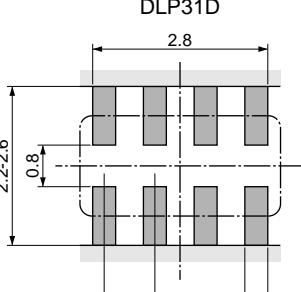
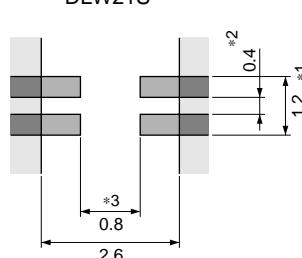
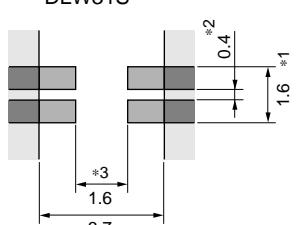
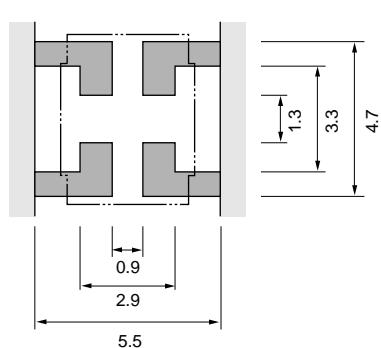
 Land Pattern
 + Solder Resist
 Land Pattern
 (in mm)
 Solder Resist






BLM15 BLM18 BLM21 BLM31 BLM41	<p>● Reflow and Flow</p> <p>BLM Series (Except BLM□□P series)</p>																																																		
<p>Type</p> <table border="1"> <thead> <tr> <th rowspan="2">Type</th> <th colspan="5">Size (mm)</th> </tr> <tr> <th>L</th> <th>W</th> <th>a</th> <th>b</th> <th>c</th> </tr> </thead> <tbody> <tr> <td>*BLM15 (Reflow)</td> <td>1.0</td> <td>0.5</td> <td>0.4</td> <td>1.2-1.4</td> <td>0.5</td> </tr> <tr> <td>BLM18 (Flow)</td> <td>1.6</td> <td>0.8</td> <td>0.7</td> <td>2.2-2.6</td> <td>0.7</td> </tr> <tr> <td>BLM18 (Reflow)</td> <td>1.6</td> <td>0.8</td> <td>0.7</td> <td>1.8-2.0</td> <td>0.7</td> </tr> <tr> <td>BLM21</td> <td>2.0</td> <td>1.25</td> <td>1.2</td> <td>3.0-4.0</td> <td>1.0</td> </tr> <tr> <td>BLM31</td> <td>3.2</td> <td>1.6</td> <td>2.0</td> <td>4.2-5.2</td> <td>1.2</td> </tr> <tr> <td>BLM41</td> <td>4.5</td> <td>1.6</td> <td>3.0</td> <td>5.5-6.5</td> <td>1.2</td> </tr> </tbody> </table>					Type	Size (mm)					L	W	a	b	c	* BLM15 (Reflow)	1.0	0.5	0.4	1.2-1.4	0.5	BLM18 (Flow)	1.6	0.8	0.7	2.2-2.6	0.7	BLM18 (Reflow)	1.6	0.8	0.7	1.8-2.0	0.7	BLM21	2.0	1.25	1.2	3.0-4.0	1.0	BLM31	3.2	1.6	2.0	4.2-5.2	1.2	BLM41	4.5	1.6	3.0	5.5-6.5	1.2
Type	Size (mm)																																																		
	L	W	a	b	c																																														
* BLM15 (Reflow)	1.0	0.5	0.4	1.2-1.4	0.5																																														
BLM18 (Flow)	1.6	0.8	0.7	2.2-2.6	0.7																																														
BLM18 (Reflow)	1.6	0.8	0.7	1.8-2.0	0.7																																														
BLM21	2.0	1.25	1.2	3.0-4.0	1.0																																														
BLM31	3.2	1.6	2.0	4.2-5.2	1.2																																														
BLM41	4.5	1.6	3.0	5.5-6.5	1.2																																														
<p>*BLM15 is specially adapted for reflow soldering.</p>																																																			
<p>Flow Mounting in High Density for BLM31/41</p>																																																			
<p>Type</p> <table border="1"> <thead> <tr> <th rowspan="2">Type</th> <th colspan="5">Size (mm)</th> </tr> <tr> <th>a</th> <th>b</th> <th>c</th> <th>d</th> <th>e</th> </tr> </thead> <tbody> <tr> <td>BLM31</td> <td>2.0</td> <td>4.2-5.2</td> <td>1.2</td> <td>1.3</td> <td>1.35</td> </tr> <tr> <td>BLM41</td> <td>3.0</td> <td>5.5-6.5</td> <td>1.2</td> <td>1.8</td> <td>1.5</td> </tr> </tbody> </table>						Type	Size (mm)					a	b	c	d	e	BLM31	2.0	4.2-5.2	1.2	1.3	1.35	BLM41	3.0	5.5-6.5	1.2	1.8	1.5																							
Type	Size (mm)																																																		
	a	b	c	d	e																																														
BLM31	2.0	4.2-5.2	1.2	1.3	1.35																																														
BLM41	3.0	5.5-6.5	1.2	1.8	1.5																																														
<p>● Do not apply narrower pattern than listed above to BLM□□P. Narrow pattern can cause excessive heat or open circuit.</p>																																																			
BLA2A BLA31	<p>● Reflow soldering</p> <p>BLA2A</p>																																																		
	<p>● Reflow and Flow</p> <p>BLA31</p>																																																		
<ul style="list-style-type: none"> If there are high amount of self-heating on pattern, the contact point of PCB and part may become damaged. 																																																			

Continued on the following page.

EMIFIL® (Soldering and Mounting)

Continued from the preceding page.









NFM NFR21G NFL18ST NFL21S VFM41R	<p>● Reflow Soldering</p> <table border="1"> <thead> <tr> <th rowspan="2">Part Number</th> <th colspan="4">Size (mm)</th> </tr> <tr> <th>a</th> <th>b</th> <th>c</th> <th>d</th> </tr> </thead> <tbody> <tr> <td>NFM21C/NFM21P</td> <td>0.8</td> <td>1.4</td> <td>2.6</td> <td>0.6</td> </tr> <tr> <td>NFR21G/NFL21S</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>NFM3DC</td> <td>1.4</td> <td>2.5</td> <td>4.4</td> <td>1.0</td> </tr> <tr> <td>NFM3DP</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>NFM41C</td> <td>2.0</td> <td>3.5</td> <td>6.0</td> <td>1.2</td> </tr> <tr> <td>NFM41P</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>VFM41R</td> <td>2.0</td> <td>3.5</td> <td>6.0</td> <td>1.2</td> </tr> </tbody> </table>	Part Number	Size (mm)				a	b	c	d	NFM21C/NFM21P	0.8	1.4	2.6	0.6	NFR21G/NFL21S					NFM3DC	1.4	2.5	4.4	1.0	NFM3DP					NFM41C	2.0	3.5	6.0	1.2	NFM41P					VFM41R	2.0	3.5	6.0	1.2										
Part Number	Size (mm)																																																						
	a	b	c	d																																																			
NFM21C/NFM21P	0.8	1.4	2.6	0.6																																																			
NFR21G/NFL21S																																																							
NFM3DC	1.4	2.5	4.4	1.0																																																			
NFM3DP																																																							
NFM41C	2.0	3.5	6.0	1.2																																																			
NFM41P																																																							
VFM41R	2.0	3.5	6.0	1.2																																																			
<p>● Flow Soldering</p> <table border="1"> <thead> <tr> <th rowspan="2">Part Number</th> <th colspan="7">Size (mm)</th> </tr> <tr> <th>a</th> <th>b</th> <th>c</th> <th>d</th> <th>e</th> <th>f</th> <th>g</th> </tr> </thead> <tbody> <tr> <td>NFM3DC</td> <td>1.0</td> <td>1.4</td> <td>2.5</td> <td>4.4</td> <td>1.0</td> <td>2.0</td> <td>2.4</td> </tr> <tr> <td>NFM3DP</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>NFM41C</td> <td>1.5</td> <td>2.0</td> <td>3.5</td> <td>6.0</td> <td>1.2</td> <td>2.6</td> <td>3.0</td> </tr> <tr> <td>NFM41P</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>VFM41R</td> <td>1.5</td> <td>2.0</td> <td>3.5</td> <td>6.0</td> <td>1.2</td> <td>2.6</td> <td>3.0</td> </tr> </tbody> </table>	Part Number	Size (mm)							a	b	c	d	e	f	g	NFM3DC	1.0	1.4	2.5	4.4	1.0	2.0	2.4	NFM3DP								NFM41C	1.5	2.0	3.5	6.0	1.2	2.6	3.0	NFM41P								VFM41R	1.5	2.0	3.5	6.0	1.2	2.6	3.0
Part Number		Size (mm)																																																					
	a	b	c	d	e	f	g																																																
NFM3DC	1.0	1.4	2.5	4.4	1.0	2.0	2.4																																																
NFM3DP																																																							
NFM41C	1.5	2.0	3.5	6.0	1.2	2.6	3.0																																																
NFM41P																																																							
VFM41R	1.5	2.0	3.5	6.0	1.2	2.6	3.0																																																
	<p>● NFM18C/NFM18P/NFL18ST</p> <p>The chip EMI filter suppress noise by passing the high-frequency noise to ground. Therefore, to get noise suppression effectively, it is recommended to put through holes ($\phi 0.3$ mm) into the center and both side of ground-pattern to connect to ground-plane.</p> <p>• NF□18, NF□21 are specially adapted for reflow soldering.</p>																																																						
NFA31G NFA31C NFW31S NFE31P	<p>● Reflow Soldering NFA31G/31C</p> <p>R0.1 to R0.2 is preferred to obtain high voltage withstanding</p>																																																						
	<p>● Reflow and Flow NFW31S ● Reflow Soldering NFE31P</p>																																																						

Continued on the following page.

EMIFIL® (Soldering and Mounting)

Continued from the preceding page.

 Land Pattern + Solder Resist

 Land Pattern
 Solder Resist (in mm)

NFE61P NFE61H	<p>● Reflow Soldering</p> <p>Chip mounting side</p> <p>Back side</p> <p>Small diameter thru hole $\phi 0.4\text{--}\phi 0.6$</p> <p>Connect to ground pattern of mounting side</p> <p>Ground pattern</p>	<p>● Flow Soldering</p> <p>Chip mounting side</p> <p>Back side</p> <p>Small diameter thru hole $\phi 0.4\text{--}\phi 0.6$</p> <p>Connect to ground pattern of mounting side</p> <p>Ground pattern</p>
	<p>● Reflow and Flow</p> <p>DLM2HG</p> <p>DLP31S</p> <p>DLP31D</p>	
	<p>● Reflow Soldering</p> <p>DLW21S</p> <p>DLW31S</p> <p>DLW5AH/5BS</p>	

* 1 : If the pattern is made with wider than 1.2mm (DLW21S) / 1.6mm (DLW31S). It will result to let components turn around, because melting speed is different. In the worst case, short circuit between lines may be occurred.

* 2 : If the pattern is made with less than 0.4mm, in the worst case, short circuit between lines may be occurred due to spread of soldering paste or mount placing accuracy.

* 3 : If the pattern is made with wider than 0.8mm (DLW21S) / 1.6mm (DLW31S), the strength of bending will be reduced.

In case you use gilded pattern, a copper wire may cause open by dissolution of metallization, if you supply with heat exceed permissible area.

Continued on the following page.

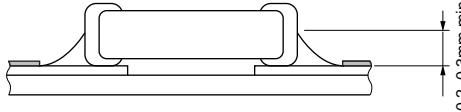
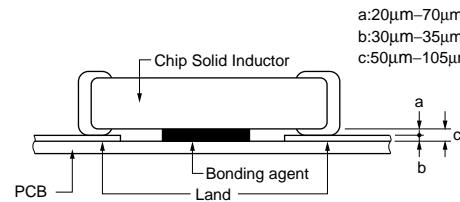
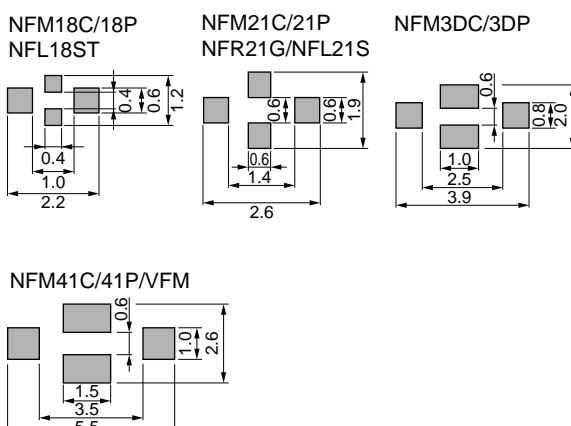
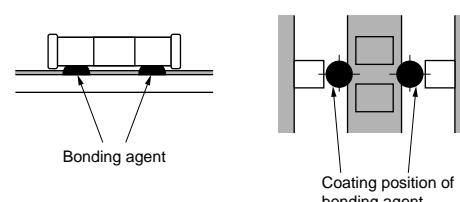
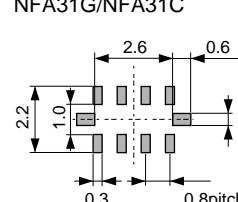
EMIFIL® (Soldering and Mounting)

Continued from the preceding page.

2. Solder Paste Printing and Adhesive Application

When reflow soldering the chip EMI suppression filter, the printing must be conducted in accordance with the following cream solder printing conditions.

If too much solder is applied, the chip will prone to be damaged by mechanical and thermal stress from the PCB and may crack. In contrast, if too little solder is applied, there is the potential that the termination strength will be insufficient, creating the potential for detachment.

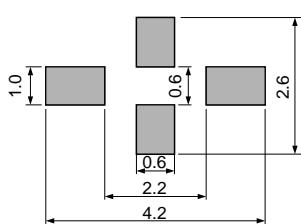
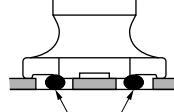
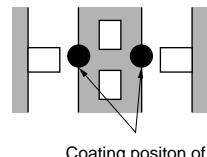
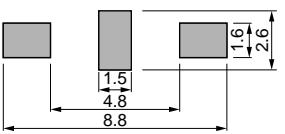
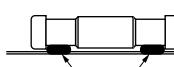
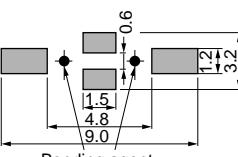
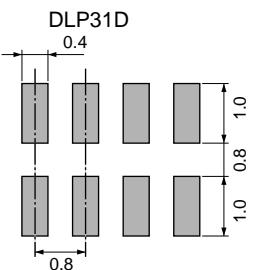
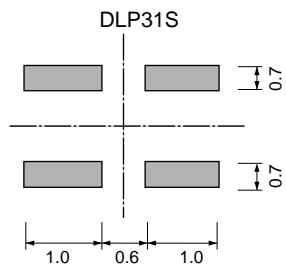
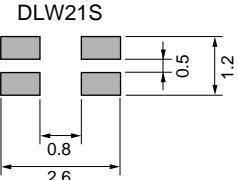
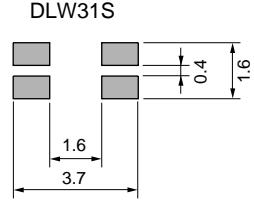
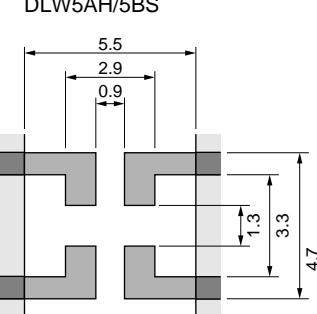
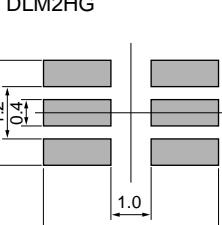
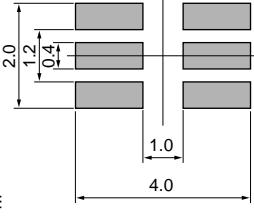
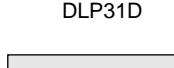
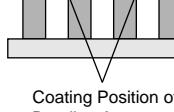
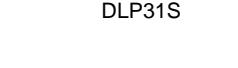
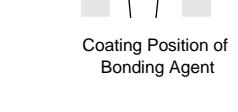





Standard land dimensions should be used for resist and

copper foil patterns.

When flow soldering the EMI suppression filter, apply the adhesive in accordance with the following conditions.

If too much adhesive is applied, then it may overflow into the land or termination areas and yield poor solderability. In contrast, if insufficient adhesive is applied, or if the adhesive is not sufficiently hardened, then the chip may become detached during flow soldering process.

(in mm)


















Series	Solder Paste Printing	Adhesive Application
BLM BLA	<ul style="list-style-type: none"> ● Ensure that solder is applied smoothly to a minimum height of 0.2mm to 0.3mm at the end surface of the part. ● Coat the solder paste a thickness: 100-200μm 	<p>Coating amount is illustrated in the following diagram.</p>
NFM NFR NFL VFM	<ul style="list-style-type: none"> ● Use H60A solder for pattern printing. ● Coat the solder paste a thickness: <ul style="list-style-type: none"> 100-150μm: NFM18/21/3D, NFR, NFL 100-200μm: NFM41, VFM 	<p>Apply 0.1mg for NFM41C/41P/VFM and 0.06mg for NFM3DC/3DP of bonding agent at each chip, and ensure not to cover electrodes.</p>
NFA	<ul style="list-style-type: none"> ● Use H60A solder for pattern printing. ● Coat the solder paste a thickness: 100-200μm 	

Continued on the following page.

EMIFIL® (Soldering and Mounting)

Continued from the preceding page.

(in mm)

Series	Solder Paste Printing	Adhesive Application
NFW31S NFE31P	<ul style="list-style-type: none"> ● Use H60A solder for pattern printing. ● Coat the solder paste a thickness: 150-200μm 	NFW31S Series Apply 0.2mg of bonding agent at each chip. Bonding agent Coating position of bonding agent
NFE61P NFE61H	<ul style="list-style-type: none"> ● Use H60A solder for pattern printing. ● Coat the solder paste a thickness: 150-200μm 	Apply 1.0mg of bonding agent at each chip. Bonding agent Coating position of bonding agent
DLP DLW DLM	<ul style="list-style-type: none"> ● Use H60A solder for pattern printing. ● Coat the solder paste a thickness: <ul style="list-style-type: none"> 100-150μm: DLW21S/31S 150-200μm: DLP31D/31S, DLM2HG, DLW5AH/5BS 	DLP31S/DLM2HG Apply 0.3mg of bonding agent at each chip. Coating Position of Bonding Agent Coating Position of Bonding Agent Coating Position of Bonding Agent

Continued on the following page.

EMIFIL® (Soldering and Mounting)

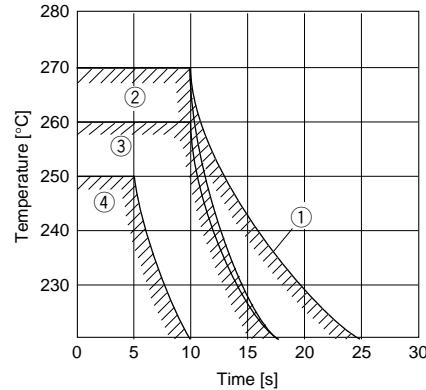
Continued from the preceding page.

3. Standard Soldering Conditions

(1) Soldering Methods

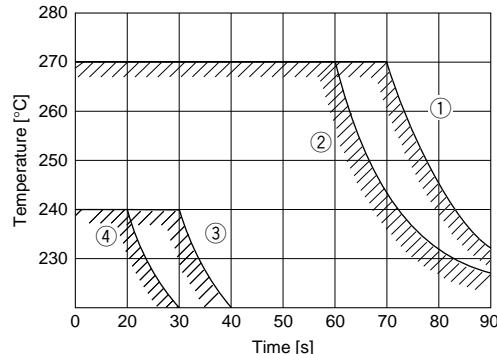
Use flow and reflow soldering methods only.
Use standard soldering conditions when soldering chip EMI suppression filters chip varistor.
In cases where several different parts are soldered, each having different soldering conditions, use those conditions requiring the least heat and minimum time.

(2) Soldering Temperature and Time


To prevent external electrode solder leaching and performance deterioration, solder within the temperature and time combinations illustrated by the slanted lines in the following graphs. If soldering is repeated, please note that the allowed time is the accumulated time.

Solder : H60A H63A solder(JIS Z 3238)

Flux :


- Use Rosin-based flux (when using RA type solder, clean products sufficiently to avoid residual flux).
- Do not use strong acidic flux (with chlorine content exceeding 0.20wt%)
- Do not use water-soluble flux.

● Allowable Flow Soldering Temperature and Time

①	NFE61P/H(Except NFE61HT332)
②	BLM(Except BLM15), BLA31
③	DLM2HG, DLP31D/S
④	VFM41R, NFM3DC/P, NFM41C/P, NFM31S

● Allowable Reflow Soldering Temperature and Time

①	NFE31P/NFE61P/H
②	BLM/BLA
③	DLM2HG, DLP31D/S
④	NFM, NFL, NFA, NFR, DLW31S, DLW5, VFM41R

Continued on the following page.

EMIFIL® (Soldering and Mounting)

Continued from the preceding page.

(3) Soldering Conditions

(4) Reworking with Solder Iron

The following conditions must be strictly followed when using a soldering iron.

Pre-heating : 150°C 60 s min.

Soldering iron power output : 30W max.

Temperature of soldering iron tip / Soldering time : 280°C max./10s max. or 300°C max./3s max.*

*NFE31PT152Z1E9/VFM : 280°C max./10 s max. only
BLM : 350°C max./3 s max.

Do not allow the tip of the soldering iron directly to contact the chip.

For additional methods of reworking with soldering iron, please contact Murata engineering.

4. Cleaning

Following conditions should be observed when cleaning chip EMI filter.

(1) Cleaning Temperature : 60°C max. (40°C max. for alcohol type cleaner)

(2) Ultrasonic

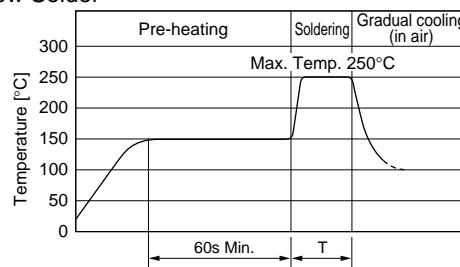
Output : 20W/liter max.

Duration : 5 minutes max.

Frequency : 28kHz to 40kHz

(3) Cleaning agent

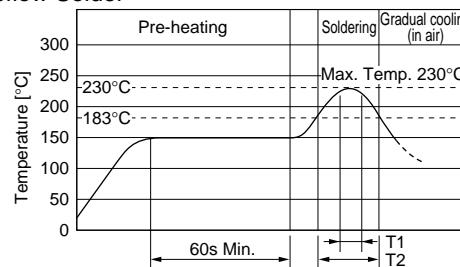
The following list of cleaning agents have been tested on the individual components. Evaluation of final assembly should be completed prior to production.


Do not clean DLW5AH/5BS, DLW21S/31S series.

In case of cleaning, please contact Murata engineering.

a) Alcohol cleaning agent

Isopropyl alcohol (IPA)


● Flow Solder

Series	Pre-heating (150°C)	Soldering Time(T)	Soldering Temp.(C)
BLM(Except BLM15), BLA31		10s max.	
NFM3DC/P, NFM41C/P, NFW31S, NFE61P/H*, DLM2HG, DLP31D/31S	60s min.	5s max.	250
VFM			

*Except NFE61HT332

● Reflow Solder

Series	Pre-heating (150°C)	Soldering Time	
		T1(183°C)	T2(230°C)
NFE31/61			250°C,20s max.
BLM, BLA			20s max.
NFM, NFL, NFR NFW, NFA, DLM/P/W VFM	60s min.	60s max.	10s max.

b) Aqueous cleaning agent

Surface active agent (Clean Thru 750H)

Hydrocarbon (Cold Cleaner 375)

High grade alcohol (Pine Alpha ST-100S)

*VFM41R series cannot be cleaned with high grade alcohol type aqueous cleaning agent.

Alkaline saponifier (Aqua Cleaner 210SEI -cleaner should be diluted within 15% using deionized water.)

(4) Ensure that flux residue is completely removed.

Component should be thoroughly dried after aqueous agent has been removed with deionized water.

(5) Some products may become slightly whitened.

However, product performance or usage is not affected.

For additional cleaning methods, please contact Murata engineering.

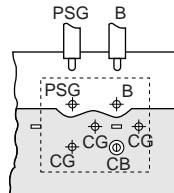
Lead Type EMIFIL® (Soldering and Mounting)

1. Mounting Hole

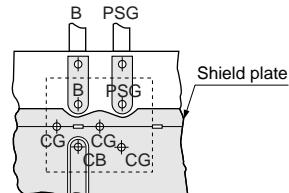
Mounting holes should be designed as specified in this specifications.

Part number	Bulk type (in mm)	Taping type (in mm)
DSN6 DSS6 VFR3V VFS6V		
DSN9 DSN9H		
DST9 DST9H		
DSS9 DSS9H VFS9V		
BNX	<p>[Component Side]</p>	<p>[TERMINAL LAYOUT (Bottom figure)]</p> <p>PSG : Power supply ground CG : Load circuit ground CB : Load circuit + Bias</p>

2. Using THE block type EMIFIL® effectively


The block type EMIFIL® effectively prevents unwanted reflections and external noise from entering the equipment circuitry and power lines by grounding all the high frequency components which make up the noise. Therefore, if grounding is improperly done, the filters may be unable to achieve the performance they are capable of. To prevent this, be sure to observe the following instructions.

- When designing the P.C. board, use all the available grounding terminals, and arrange the grounding circuit so that the area of the foil for the grounding circuit is maximized.
- Minimize the distance between the P.C. board ground and the filter's grounding plate. Use of through-hole P.C. boards.
- Whichever P.C. board is used, push the filter into the P.C. board up to the terminal roots.
- Do not connect PSG to CG by any other means except through the filter. (See the item 1. TERMINAL LAYOUT)


[P.C.B. BOARD PATTERNS]

Use a bilateral P.C. board. Insert the BNX into the P.C. board until the root of the terminal is secured. then solder.

(1) FRONT VIEW

(2) BOTTOM VIEW

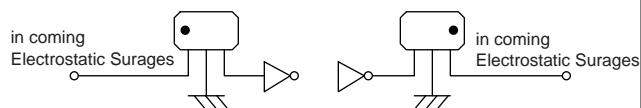
PSG: Power supply ground
CG : Load circuit ground
CB : Load circuit + Bias

Continued on the following page.

Lead Type EMIFIL® (Soldering and Mounting)

Continued from the preceding page.

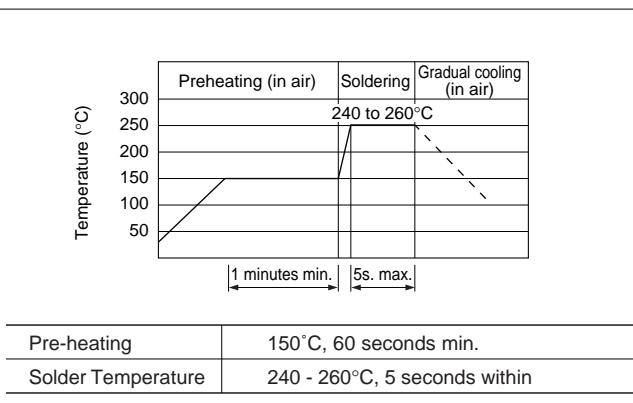
3. Using EMIGUARD® effectively


- (1) Terminal (with mark) should be connected to the line of incoming electrostatic surge. (There is polarity.) Otherwise, no effect in ESD suppression can be expected. (VFR3V)
- (2) Products should be used at rated voltage or less and rated current or less.
- (3) Products should not be applied for the absorption of surge which have large energy (ex. induced lighting surges, switching surges) because it is designed for the absorption of electrostatic surges. (VFR3V)
- (4) Electrostatic test should be done on the following conditions. (VFR3V)
$$n \cdot [C / R \cdot V^2]^2 < 8.0 \times 10^5$$

n : Times applies
C : Charging Capacitance (pF)
V : Testing Voltage (kV)
R : Charging Resistance (Ω)

4. Soldering

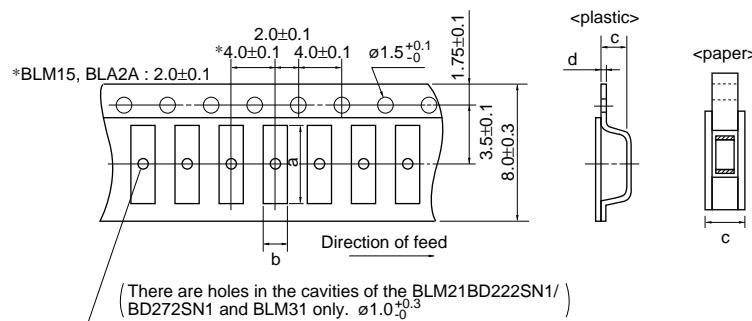
- (1) Use Rosin-based flux. Do not use strong acidic flux with halide content exceeding 0.2 (wt)% (chlorine conversion value).
- (2) Standard flow soldering profile.
- (3) Products and the leads should not be subjected to any mechanical stress during soldering process.
(and also while subjected to the equivalent high temperature.)


Example on input terminal Example on output terminal

5. Cleaning Conditions

Do not clean VFR3V, PLT09H and VFS6Vseries.
Clean other parts on the following conditions.

- (1) Cleaning temperature shall be limited to 60°C max. (40°C max for alcohol type cleaner.)
- (2) Ultrasonic cleaning shall comply with the following conditions with avoiding the resonance phenomenon at the mounted products and P.C.B.
Power : 20 W / l max. Frequency : 28kHz to 40kHz
Time : 5 min. max.
- (3) Cleaner
 - a) Alcohol type cleaner
 - Isopropyl alcohol (IPA)
 - b) Aqueous agent(PLT series cannot be cleaned)
 - Surface Active Agent Type
(CLEANTHROUGH 750H)



- Hydrocarbon Type (COLDCLEANER 375)
- Higher Alcohol Type(PINE ALPHA ST-100S)
- Alkali Saponification Type
(*AQUACLEANER 210SEI)
* Alkali saponification shall be diluted to 15% volume with de-ionized water.

- (4) There shall be no residual flux and residual cleaner after cleaning.
In the case of using aqueous agent, products shall be dried completely after rinse with de-ionized water in order to remove the cleaner.
- (5) Other cleaning : Please contact us.

Chip EMIFIL® Packaging

■ Minimum Quantity and Dimensions of 8mm Width Paper / Plastic Tape

Part Number	Cavity Size				Minimum QTY. (pcs.)				Bulk
	a	b	c	d	ø180mm reel	ø330mm reel	Paper Tape	Plastic Tape	
BLM15	1.15	0.65	0.8	-	10000	-	50000	-	1000
BLM18	1.85	1.05	1.1	-	4000	-	10000	-	1000
BLM21 (BD222SN1/BD272SN1)	2.25	1.45	1.1	-	4000	-	10000	-	1000
BLM31 (AF700SN1)	3.5	1.9	1.3	0.2	-	3000	-	10000	1000
BLA2A	2.2	1.2	0.8	-	10000	-	-	-	1000
BLA31	3.4	1.8	1.1	-	4000	-	10000	-	1000
NFM18/NFL18ST	1.85	1.05	1.1	-	4000	-	-	-	500
NFM21/NFL21S	2.3	1.55	1.1	-	4000	-	-	-	500
NFM3DC/3DP	3.4	1.4	0.85	0.2	-	4000	-	-	500
NFA31G/31C	3.5	2.0	1.1	-	4000	-	-	-	100
NFE31P	3.6	1.9	2.0	0.2	-	2000	-	8000	500
NFR21G	2.3	1.55	0.07	0.25	-	4000	-	-	500
NFW31S	3.6	1.9	2.0	0.2	-	2000	-	7500	-
DLM2HG	2.75	2.25	1.3	0.25	-	3000	-	-	1000
DLP31D/31S	3.5	1.9	1.3	0.25	-	3000	-	-	500
DLW21S	2.25	1.45	1.4	0.3	-	2000	-	-	500
DLW31S	3.6	2.0	2.1	0.3	-	2000	-	-	500

• Please contact us for BLM15/18 in bulk case.

(in mm)

Continued on the following page.

Chip EMIFIL® Packaging

Continued from the preceding page.

■ Minimum Quantity and Dimensions of 12mm Width Plastic Tape

(There are holes in the cavities of the BLM41 only. $\varnothing 1.5 \pm 0.3$)

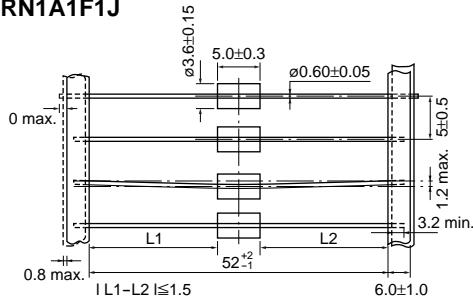
Part Number	Cavity Size			Minimum QTY. (pcs.)		
	a	b	c	$\varnothing 180$ mm reel	$\varnothing 330$ mm reel	Bulk
BLM41	4.8	1.9	1.75	2500	8000	1000
NFM41	4.8	1.8	1.1	4000	-	500
NFE61	7.2	1.9	1.75	2500	8000	500
VFM41R	4.8	1.8	1.35	2500	-	500

$\varnothing 1.5 \pm 0.3$

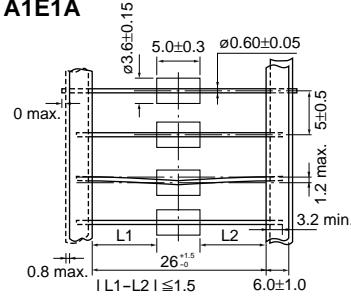
Part Number	Cavity Size			Minimum QTY. (pcs.)		
	a	b	c	$\varnothing 180$ mm reel	$\varnothing 330$ mm reel	Bulk
DLW5AH	5.4	4.1	4.4	400	1500	100
DLW5BS	5.5	5.4	4.7	400	1500	100

(in mm)

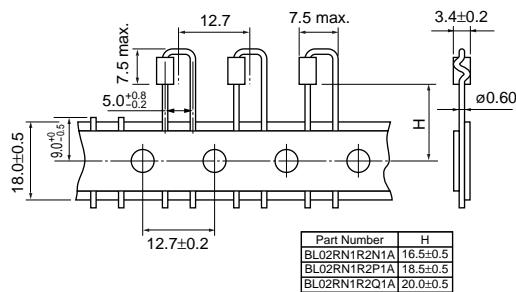
Ferrite Beads Inductors Packaging

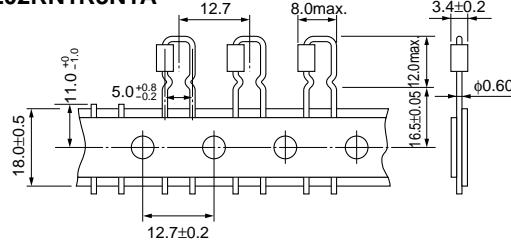

■ Minimum Quantity

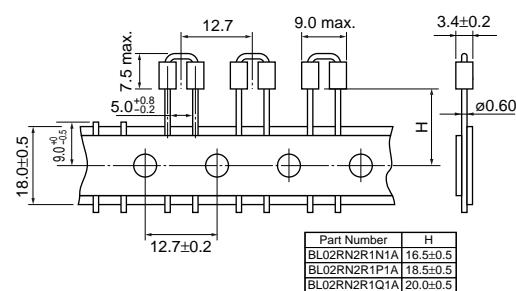
Part Number	Minimum Order Quantity (order in sets only) (Pcs.)	
	Ammo Pack	ø320mm Paper reel
BL01RN1A1F1J	—	2000
BL01RN1A1E1A	1000	—
BL02RN1R2P1A	1500	—
BL02RN1R3N1A	1500	—
BL02RN2R1P1A	1500	—
BL02RN2R3N1A	1500	—
BL03RN2R1P1A	2000	—

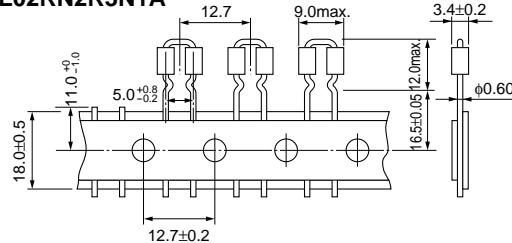

Part Number	Minimum Order Quantity (order in sets only) (Pcs.)	
	Bulk (Bag)	
BL01RN1A1D2B		
BL01RN1A2A2B		
BL02RN1R2M2B		500
BL02RN1R3J2B		
BL02RN2R1M2B		
BL02RN2R3J2B		
BL03RN2R1M1B		1000

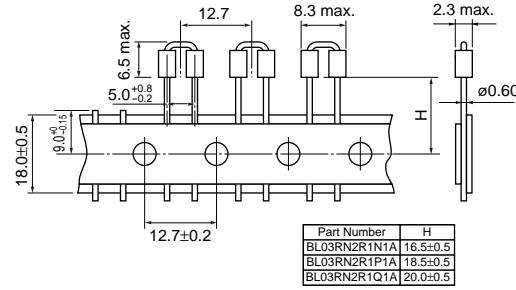
■ Taping Dimensions


BL01RN1A1F1J


BL01RN1A1E1A


BL02RN1R2P1A


BL02RN1R3N1A


BL02RN2R1P1A

BL02RN2R3N1A

BL03RN2R1P1A

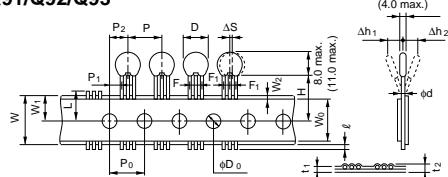
(in mm)

Disc Type EMIFIL® and EMIGUARD® Packaging

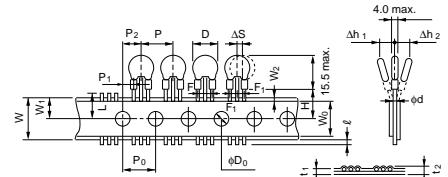
■ Minimum Quantity

Part Number	Minimum Order Quantity (order in sets only) (Pcs.)		
	Ammo Pack	ø320mm Paper reel	Bulk (Bag)
VFR3V Series	2000	—	250
DS6/VFS6V Series	2000	—	250
DSN9/9H Series	2000	—	250
DST9/9H Series	1000*1	1000*2	200
DSS9/9H Series	—	800	200
VFS9V Series	—	800	200

*1 : Q92, Q93 *2 : Q91

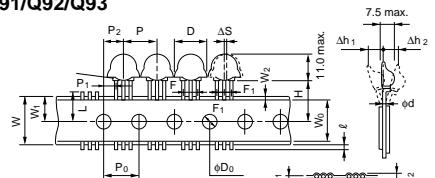

■ Lead Type Code

Series	Straight Type	Incrimp Type	Lead length (H)
DS□ VFS9V	Q91	-	20.0±1.0mm
	Q92	-	16.5±1.0mm
	Q93	-	18.5±1.0mm
DSS6	-	U21	16.5±1.0mm
	-	U31	18.5±1.0mm
VFS6V VFR3	-	-	-

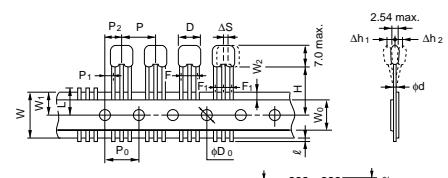

■ Taping Dimensions

DSN6_Q91/Q92/Q93

DSN9_Q91/Q92/Q93

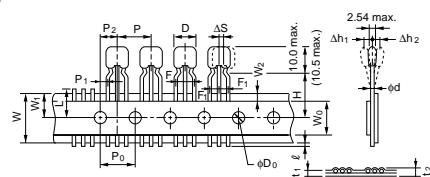


DST9_Q91/Q92/Q93

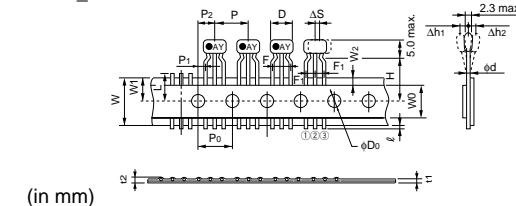


DSS9_Q91/Q92/Q93

VFS9V_Q91/Q92/Q93



DSS6_Q91/Q92/Q93



DSS6_U21/U31

VFS6V_U31

VFR3V_U31

Item	Code	Dimensions (mm)	Remarks
Pitch of Component	P	12.7	Product inclination ΔS determines tolerance
Pitch of Sprocket Hole	P0	12.7±0.2	
Length from Hole Center to Component Center	P1	3.85±0.7	
	P2	6.35±1.3	Tape deviation in feeding direction
Width of Body	D	7.0 max. 8.0 max. 9.5 max. 12.0 max.	DSN6N DST(S)6N/VFS6V/VFR3V DSN9N(H)/DST9N(H) DSS9N(H)/VFS9V
	ΔS	0±1.0	
Carrier Tape Width	W	18.0±0.5	
Position of Sprocket Hole	W1	9.0+0/-0.5	Tape width deviation
Protrusion Length	ℓ	+0.5 to -1.0	
Diameter of Sprocket Hole	D0	ø4.0±0.1	
Lead diameter	d	ø0.6	ø0.45±0.1(VFR)
Total Tape Thickness Total Thickness, Tape and Lead Wire	t1 t2	0.7±0.2 1.5 max.	Including bonding tape thickness
Deviation across Tape	Δh1	1.0 max.	
	Δh2	1.0 max.	
Portion to Cut in Case of Defect	L	11.0+0/-1.0	
Hold Down Tape Width	W0	12.0±0.5	
Hold Down Tape Position	W2	1.5±1.5	
Lead Distance between Reference and Bottom Planes	H	20±1.0 16.5±1.0 18.5±1.0	Q91 Type Q92, U21 Type Q93, U31 Type
	F	5.0+0.8/-0.2	
	F1	2.5+0.4/-0.2	

Chip EMI Suppression Filter Design Kits

●EKEMBL15C (Chip Ferrite Beads 0402 Size)

No.	Part Number	Quantity (pcs.)	Impedance typ. (at 100MHz, 20 degree C)	Rated Current (mA)	DC Resistance (Ω) max.
1	BLM15AG100SN1	20	10Ω (Typ.)	1000	0.05
2	BLM15AG700SN1	20	70Ω (Typ.)	500	0.15
3	BLM15AG121SN1	20	120Ω±25%	500	0.25
4	BLM15AG221SN1	20	220Ω±25%	300	0.35
5	BLM15AG601SN1	20	600Ω±25%	300	0.60
6	BLM15AG102SN1	20	1000Ω±25%	200	1.00
7	BLM15BB050SN1	20	5Ω±25%	500	0.08
8	BLM15BB100SN1	20	10Ω±25%	300	0.10
9	BLM15BB220SN1	20	22Ω±25%	300	0.20
10	BLM15BB470SN1	20	47Ω±25%	300	0.35
11	BLM15BB750SN1	20	75Ω±25%	300	0.40
12	BLM15BB121SN1	20	120Ω±25%	300	0.55
13	BLM15BB221SN1	20	220Ω±25%	200	0.80
14	BLM15BD471SN1	20	470Ω±25%	200	0.60
15	BLM15BD601SN1	20	600Ω±25%	200	0.65
16	BLM15BD102SN1	20	1000Ω±25%	200	0.90

●EKEMBL18A (Chip Ferrite Beads 0603 Size/ for Large-current P Type)

No.	Part Number	Quantity (pcs.)	Impedance typ. (at 100MHz, 20 degree C)	Rated Current (mA)	DC Resistance (Ω) max.
1	BLM18AG121SN1	20	120Ω	200	0.20
2	BLM18AG221SN1	20	220Ω	200	0.30
3	BLM18AG471SN1	20	470Ω	200	0.50
4	BLM18AG601SN1	20	600Ω	200	0.50
5	BLM18AG102SN1	20	1000Ω	100	0.70
6	BLM18BA050SN1	20	5Ω	500	0.20
7	BLM18BA100SN1	20	10Ω	500	0.25
8	BLM18BA220SN1	20	22Ω	500	0.35
9	BLM18BA470SN1	20	47Ω	300	0.55
10	BLM18BA750SN1	20	75Ω	300	0.35
11	BLM18BA121SN1	20	120Ω	200	0.90
12	BLM18BB100SN1	20	10Ω	500	0.15
13	BLM18BB220SN1	20	22Ω	500	0.25
14	BLM18BB470SN1	20	47Ω	500	0.30
15	BLM18BB600SN1	20	60Ω	200	0.35
16	BLM18BB121SN1	20	120Ω	200	0.50
17	BLM18BB221SN1	20	220Ω	200	0.65
18	BLM18BB471SN1	20	470Ω	50	1.00
19	BLM18BD121SN1	20	120Ω	200	0.40

Continued on the following page.

Chip EMI Suppression Filter Design Kits

Continued from the preceding page.

No.	Part Number	Quantity (pcs.)	Impedance typ. (at 100MHz, 20 degree C)	Rated Current (mA)	DC Resistance (Ω) max.
20	BLM18BD221SN1	20	220Ω	200	0.45
21	BLM18BD471SN1	20	470Ω	200	0.55
22	BLM18BD601SN1	20	600Ω	200	0.65
23	BLM18BD102SN1	20	1000Ω	100	0.85
24	BLM18BD182SN1	20	1800Ω	50	1.50
25	BLM18BD252SN1	20	2500Ω	50	1.50
26	BLM18HG471SN1	20	470Ω	200	0.85
27	BLM18HG601SN1	20	600Ω	200	1.00
28	BLM18HG102SN1	20	1000Ω	100	1.60
29	BLM18HD471SN1	20	470Ω	100	1.20
30	BLM18HD601SN1	20	600Ω	100	1.50
31	BLM18HD102SN1	20	1000Ω	50	1.80
32	BLM18PG330SN1	20	33Ω	3000	0.025
33	BLM18PG121SN1	20	120Ω	2000	0.05
34	BLM18PG181SN1	20	180Ω	1500	0.09
35	BLM21PG221SN1	20	220Ω	2000	0.05
36	BLM21PG331SN1	20	330Ω	1500	0.09
37	BLM31PG121SN1	20	120Ω	3000	0.025
38	BLM31PG391SN1	20	390Ω	2000	0.05
39	BLM31PG601SN1	20	600Ω	1500	0.9
40	BLM41PG181SN1	20	180Ω	3000	0.025
41	BLM41PG471SN1	20	470Ω	2000	0.05
42	BLM41PG102SN1	20	1000Ω	1500	0.09
43	BLM18RK121SN1	20	120Ω	200	0.25
44	BLM18RK221SN1	20	220Ω	200	0.3
45	BLM18RK471SN1	20	470Ω	200	0.5
46	BLM18RK601SN1	20	600Ω	200	0.6
47	BLM18RK102SN1	20	1000Ω	200	0.8
48	BLM18HK471SN1	20	470Ω	200	0.7
49	BLM18HK601SN1	20	600Ω	100	0.9
50	BLM18HK102SN1	20	1000Ω	50	1.5

●EKEMBL21A (Chip Ferrite Beads 0805 Size)

No.	Part Number	Quantity (pcs.)	Impedance typ. (at 100MHz, 20 degree C)	Rated Current (mA)	DC Resistance (Ω) max.
1	BLM21AG121SN1	20	120Ω	200	0.15
2	BLM21AG221SN1	20	220Ω	200	0.20
3	BLM21AG471SN1	20	470Ω	200	0.25
4	BLM21AG601SN1	20	600Ω	200	0.30
5	BLM21AJ601SN1	20	600Ω	200	1.10
6	BLM21AG102SN1	20	1000Ω	200	0.45
7	BLM21AH102SN1	20	1000Ω	200	0.45
8	BLM21BB600SN1	20	60Ω	200	0.20
9	BLM21BB750SN1	20	75Ω	200	0.25
10	BLM21BB121SN1	20	120Ω	200	0.25
11	BLM21BB221SN1	20	220Ω	200	0.35
12	BLM21BB471SN1	20	470Ω	200	0.45
13	BLM21BD121SN1	20	120Ω	200	0.25
14	BLM21BD221SN1	20	220Ω	200	0.25
15	BLM21BD471SN1	20	470Ω	200	0.35
16	BLM21BD601SN1	20	600Ω	200	0.35
17	BLM21BD102SN	20	1000Ω	200	0.40

Continued on the following page.

Chip EMI Suppression Filter Design Kits

Continued from the preceding page.

No.	Part Number	Quantity (pcs.)	Impedance typ. (at 100MHz, 20 degree C)	Rated Current (mA)	DC Resistance (Ω) max.
18	BLM21BD182SN1	20	1800Ω	200	0.50
19	BLM21BD222SN1	20	2250Ω	200	0.60
20	BLM21BD222TN1	20	2200Ω	200	0.60
21	BLM21BD272SN1	20	2700Ω	200	0.80

● EKEMFM21B (Chip EMIFIL Capacitor Type/ LC Combined Type/RC Combined Type)

No.	Part Number	Quantity (pcs.)	Rated Voltage	Rated Current	Insulation Resistance (MΩ min.)	Resistance
1	NFM21CC220U1H3	20	50V	300mA	1000	-
2	NFM21CC470U1H3	20	50V	300mA	1000	-
3	NFM21CC101U1H3	20	50V	300mA	1000	-
4	NFM21CC221R1H3	20	50V	300mA	1000	-
5	NFM21CC471R1H3	20	50V	300mA	1000	-
6	NFM21CC102R1H3	20	50V	300mA	1000	-
7	NFM21CC222R1H3	20	50V	300mA	1000	-
8	NFM21CC223R1H3	20	50V	1A	1000	-
9	NFM18PC105R0J3	20	6.3V	2A	500	-
10	NFM21PC104R1E3	20	25V	2A	1000	-
11	NFM21PC224R1C3	20	16V	2A	1000	-
12	NFM21PC474R1C3	20	16V	2A	1000	-
13	NFM21PC105B1A3	20	10V	4A	500	-
14	NFM21PC105F1C3	20	16V	2A	500	-
15	NFE31PT152Z1E9	20	25V	6A	1000	-
16	NFE31PT222Z1E9	20	25V	6A	1000	-
17	NFE61PT102E1H9	20	50V	2A	1000	-
18	NFE61PT472C1H9	20	50V	2A	1000	-
19	NFR21GD1002202	20	50V	50mA	1000	22Ω±30%
20	NFR21GD1004702	20	50V	35mA	1000	47Ω±30%
21	NFR21GD4702202	20	50V	50mA	1000	22Ω±30%
22	NFR21GD4704702	20	50V	35mA	1000	47Ω±30%
23	NFR21GD4706802	20	50V	30mA	1000	68Ω±30%
24	NFR21GD4701012	20	50V	25mA	1000	100Ω±30%
25	NFR21GD1012202	20	50V	50mA	1000	22Ω±30%
26	NFR21GD1014702	20	50V	35mA	1000	47Ω±30%
27	NFR21GD1016802	20	50V	30mA	1000	68Ω±30%
28	NFR21GD1011012	20	50V	25mA	1000	100Ω±30%

● EKEMFM3DA (Chip EMIFIL Capacitor Type/ LC Combined Type)

No.	Part Number	Quantity (pcs.)	Capacitance	Rated Voltage	Rated Current	Insulation Resistance (MΩ min.)
1	NFM3DCC220U1H3	20	22pF	50V	300mA	1000
2	NFM3DCC470U1H3	20	47pF	50V	300mA	1000
3	NFM3DCC101U1H3	20	100pF	50V	300mA	1000
4	NFM3DCC221R1H3	20	220pF	50V	300mA	1000
5	NFM3DCC471R1H3	20	470pF	50V	300mA	1000
6	NFM3DCC102R1H3	20	1000pF	50V	300mA	1000
7	NFM3DCC222R1H3	20	2200pF	50V	300mA	1000
8	NFM3DCC223R1H3	20	22000pF	50V	300mA	1000
9	NFM41PC204F1H3	20	0.2μF	50V	2A	1000
10	NFE61PT102E1H9	20	1000pF	50V	2A	1000
11	NFE61PT472C1H9	20	4700pF	50V	2A	1000

Continued on the following page.

Chip EMI Suppression Filter Design Kits

Continued from the preceding page.

●EKEMFL18A (Chip EMIFIL LC Combined Type)

No.	Part Number	Quantity (pcs.)	Capacitance	Rated Voltage	Rated Current	Insulation Resistance (MΩ min.)	DC Resistance mΩ
1	NFL18ST107X1C3D	20	40pF±20%	16 Vdc	100mA	1000	4.5Ω
2	NFL18ST157X1C3D	20	32pF±20%	16 Vdc	100mA	1000	4.0Ω
3	NFL18ST207X1C3D	20	25pF±20%	16 Vdc	150mA	1000	3.5Ω
4	NFL18ST307X1C3D	20	18pF±20%	16 Vdc	200mA	1000	1.8Ω
5	NFL18ST507X1C3D	20	10pF±20%	16 Vdc	200mA	1000	1.5Ω
6	NFL21SP206X1C3D	20	240pF±20%	16 Vdc	100mA	1000	8.5Ω
7	NFL21SP506X1C3D	20	84pF±20%	16 Vdc	150mA	1000	3.5Ω
8	NFL21SP706X1C3D	20	76pF±20%	16 Vdc	150mA	1000	3.0Ω
9	NFL21SP107X1C3D	20	44pF±20%	16 Vdc	200mA	1000	2.0Ω
10	NFL21SP157X1C3D	20	28pF±20%	16 Vdc	200mA	1000	2.0Ω
11	NFL21SP207X1C3D	20	22pF±20%	16 Vdc	250mA	1000	1.5Ω
12	NFL21SP307X1C3D	20	19pF±10%	16 Vdc	300mA	1000	1.2Ω
13	NFL21SP407X1C3D	20	16pF±10%	16 Vdc	300mA	1000	1.2Ω
14	NFL21SP507X1C3D	20	12pF±10%	16 Vdc	300mA	1000	1.2Ω

No.	Part Number	Quantity (pcs.)	Cut off Frequency	Attenuation (dB min.)										Rated Current	Rated Voltage
				10MHz	20MHz	50MHz	100MHz	150MHz	200MHz	300MHz	400MHz	500MHz	1GHz		
15	NFW31SP106X1E4L	20	10MHz	6dB max	5	25	25	-	25	-	-	30	30	200mA	25Vdc
16	NFW31SP206X1E4L	20	20MHz	-	6dB max	5	25	-	25	-	-	30	30	200mA	25Vdc
17	NFW31SP506X1E4L	20	50MHz	-	-	6dB max	10	-	30	-	-	30	30	200mA	25Vdc
18	NFW31SP107X1E4L	20	100MHz	-	-	-	6dB max	-	5	-	-	20	20	200mA	25Vdc
19	NFW31SP157X1E4L	20	150MHz	-	-	-	-	6dB max	-	10	20	30	30	200mA	25Vdc
20	NFW31SP207X1E4L	20	200MHz	-	-	-	-	-	6dB max	-	-	10	30	200mA	25Vdc
21	NFW31SP307X1E4L	20	300MHz	-	-	-	-	-	-	6dB max	-	5	15	200mA	25Vdc
22	NFW31SP407X1E4L	20	400MHz	-	-	-	-	-	-	-	6dB max	-	10	200mA	25Vdc
23	NFW31SP507X1E4L	20	500MHz	-	-	-	-	-	-	-	-	6dB max	10	200mA	25Vdc

●EKEMFA31A (Chip EMIFIL Capacitor Array Type/ Capacitor Type/ LC Combined Type)

No.	Part Number	Quantity (pcs.)	Capacitance	Rated Voltage	Rated Current	Insulation Resistance (MΩ min.)
1	NFA31CC220S1E4	20	22pF	25V	200mA	1000
2	NFA31CC470S1E4	20	47pF	25V	200mA	1000
3	NFA31CC101S1E4	20	100pF	25V	200mA	1000
4	NFA31CC221S1E4	20	220pF	25V	200mA	1000
5	NFA31CC471R1E4	20	470pF	25V	200mA	1000
6	NFA31CC102R1E4	20	1000pF	25V	200mA	1000
7	NFA31CC222R1E4	20	2200pF	25V	200mA	1000
8	NFA31CC223R1C4	20	22000pF	16V	200mA	1000
9	NFM21PC104R1E3	20	0.1μF	25V	2A	1000
10	NFM21PC105B1A3	20	1μF	10V	4A	500
11	NFE31PT152Z1E9	20	1500pF	25V	6A	1000
12	NFE31PT222Z1E9	20	2200pF	25V	6A	1000

●EKEMDL21B (Chip Common Mode Choke Coils)

No.	Part Number	Quantity (pcs.)	Common Mode Impedance typ. (at 100MHz, 20 degree C)	Rated Voltage	Rated Current	Insulation Resistance (MΩ min.)
1	DLW21SN670SQ2	10	67Ω	50V	400mA	10
2	DLW21SN900SQ2	10	90Ω	50V	330mA	10
3	DLW21SN121SQ2	10	120Ω	50V	370mA	10
4	DLW21SN181SQ2	10	180Ω	50V	330mA	10

Continued on the following page.

Chip EMI Suppression Filter Design Kits

Continued from the preceding page.

No.	Part Number	Quantity (pcs.)	Common Mode Impedance typ. (at 100MHz, 20 degree C)	Rated Voltage	Rated Current	Insulation Resistance (MΩ min.)
5	DLW21SN261SQ2	10	260Ω	50V	300mA	10
6	DLW21SN371SQ2	10	370Ω	50V	280mA	10
7	DLW31SN900SQ2	10	90Ω	50V	370mA	10
8	DLW31SN161SQ2	10	160Ω	50V	340mA	10
9	DLW31SN261SQ2	10	260Ω	50V	310mA	10
10	DLW31SN601SQ2	10	600Ω	50V	260mA	10
11	DLW31SN102SQ2	10	1000Ω	50V	230mA	10
12	DLW31SN222SQ2	10	2200Ω	50V	200mA	10
13	DLW5AHN402SQ2	5	4000Ω	50V	200mA	10
14	DLW5BSN302SQ2	5	3000Ω	50V	500mA	10
15	DLW5BSN152SQ2	5	1500Ω	50V	1000mA	10
16	DLW5BSN102SQ2	5	1000Ω	50V	1500mA	10
17	DLW5BSN351SQ2	5	350Ω	50V	2000mA	10
18	DLW5BSN191SQ2	5	190Ω	50V	5000mA	10
19	DLP31DN900SL4	10	90Ω	10V	100mA	100
20	DLP31DN161SL4	10	160Ω	10V	100mA	100
21	DLP31DN201SL4	10	200Ω	10V	100mA	100
22	DLP31DN361SL4	10	360Ω	10V	100mA	100
23	DLP31DN471SL4	10	470Ω	10V	100mA	100

Outlines of Major Noise Regulation Standards

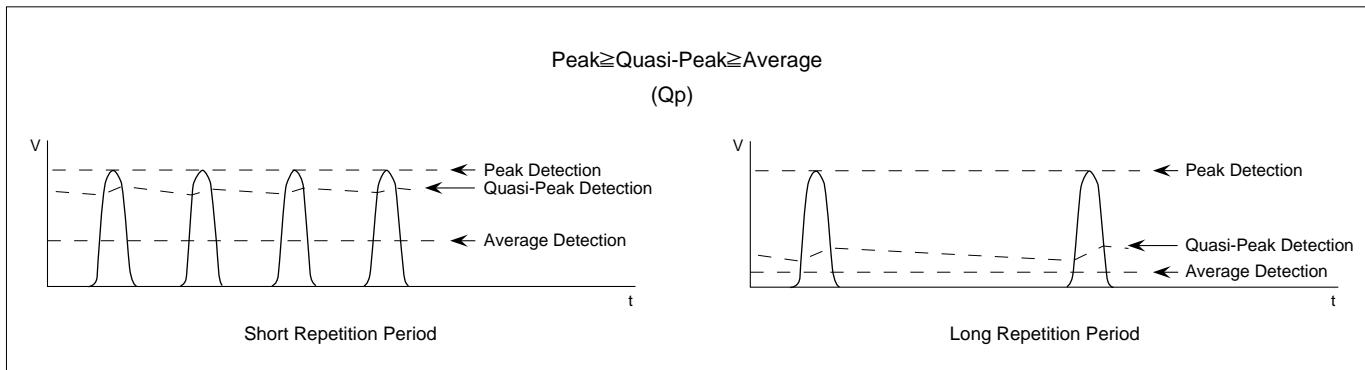
1. EMI Regulations

Equipment	Countries	Information Regulation	Japan	USA	Europe
Emission	Generic Standard	IEC61000-6-3 (Residential, Commercial and Light Industry) IEC61000-6-4 (Industrial)			EN50081-1 (Residential, Commercial and Light Industry) EN50081-2 (Industrial)
	ITE : Information Technology Equipment Printer, Personal computer Word processor, Display	CISPR 22	VCCI *1	FCC Part 15 Subpart B	EN55022
	ISM equipment, Microwave	CISPR 11	*1	FCC Part 18	EN55011
	Igniter (Automobile, Motorboat)	CISPR 12	JASO	FCC Part 15 Subpart B	Automotive Directive
	TV, Radio, Audio, VTR	CISPR 13	*1	FCC Part 15 Subpart B	EN55013
	Household electrical equipment Portable tool	CISPR 14	*1		EN55014
	Fluorescent Lamp, Luminary	CISPR 15	*1		EN55015
	Transceiver	ITU-T	Radio Act ARIB (Voluntary Regulation)	FCC Part 15 Subpart C FCC Part 22	ETS300 Series
Immunity	(Reference) Power Supply Higher Harmonic	IEC61000-3	Industrial Voluntary Regulation		EN61000-3
	Basic Standard	IEC61000-4	In the process of Regulating at JIS		EN61000-4 Series
	Generic Standard	IEC61000-6-1 (Residential, Commercial and Light Industry) IEC61000-6-2 (Industrial)	In the process of Regulating at JIS		EN50082-1 (Residential, Commercial and Light Industry) EN50082-2 (Industrial)
	Industrial Process Measurement and Control Equipment		Industrial Voluntary Action		
	Radio, TV	CISPR 20			EN55020
	ITE : Information Technology Equipment	CISPR 24			EN55024

*1 Electrical Appliance and Material Safety Law

There are EMI regulation in each country to meet EMI noise level emitted from digital equipment.

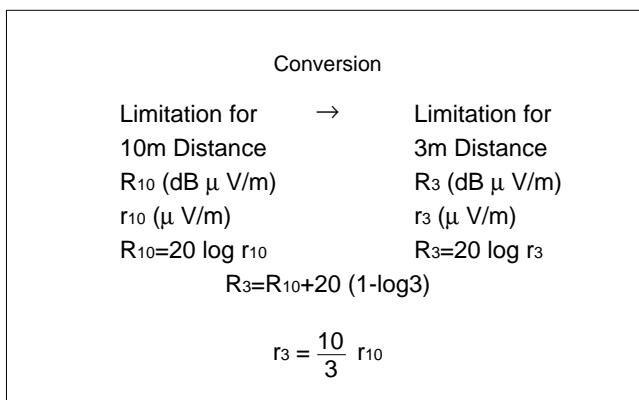
In the countries which regulates EMI, equipments which do not satisfy with regulations are not allowed to be sold.

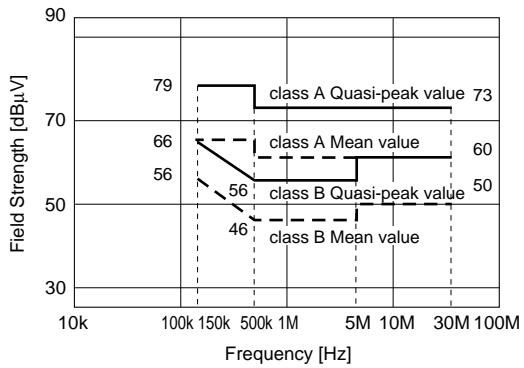

Continued on the following page.

Outlines of Major Noise Regulation Standards

Continued from the preceding page.

2. Measurement Point and Noise Detection


Regulation	Measuring Item	Polarization and Measuring Point	Frequency (Hz)	Detection	Measuring Devices
CISPR 22/ EN55022	Radiated Interference	Horizontal Pol. Vertical Pol.	30M to 1GHz	Quasi-Peak Detection	Antenna
	Mains Interference Voltage	AC Mains Ports	150k to 30MHz	Quasi-Peak Detection Mean Detection	Artificial Mains Network
VCCI	Radiated Interference	Horizontal Pol. Vertical Pol.	30M to 1GHz	Quasi-Peak Detection	Dipole Antenna
	Mains Interference Voltage	AC Mains Ports	150k to 30MHz	Quasi-Peak Detection Mean Detection	Artificial Mains Network
FCC Part 15	Radiated Interference	Horizontal Pol. Vertical Pol.	30M to 40GHz	Quasi-Peak Detection Mean Detection	Antenna
	Mains Interference Voltage	AC Mains Ports	150k to 30MHz	Quasi-Peak Detection	Artificial Mains Network


3. Limits of CISPR 22/EN55022

(1) CISPR 22 recommends measurement at 10m distance.

However, other distance is acceptable if the limitation is converted according to following calculation. Limitation shown left is converted to limitation for 3m distance.

[Mains Terminal Interference Voltage (Power Supply)]

[Radiated Interference]

On the border frequency, lower limit shall be applied.

Class A Equipment : The equipment which is used in light industries area or commercial area.

Class B Equipment : The equipment which is used in residential area.

Continued on the following page.

Outlines of Major Noise Regulation Standards

Continued from the preceding page.

(2) Scope of CISPR 22 Regulation

This regulation applies to information technology equipment (ITE) which are defined as :

- (a) Equipment that receive data from external signal sources ;
- (b) Equipment that processes received data ;
- (c) Equipment that output data
- (d) Equipment that has less than 600V rated voltage in power supply

[CISPR Regulations]

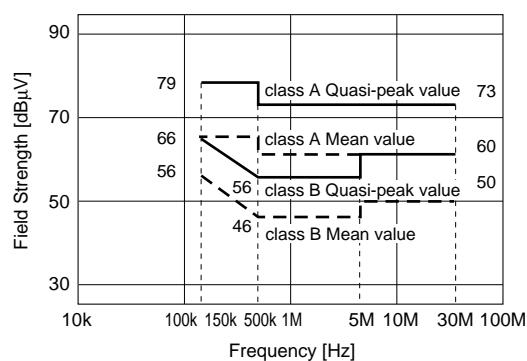
CISPR 10 Organization, Regulations and Procedures of CISPR
CISPR 11 Industrial, Scientific and Medical (ISM) Radio-Frequency Equipment
CISPR 12 Vehicles, Motor Boats and Spark-Ignited Engine-driven
CISPR 13 Sound and Television Receivers
CISPR 14 Household Electrical Appliances, Portable Tools and Similar Electrical Apparatus
CISPR 15 Fluorescent Lamps and luminaries
CISPR 16 Radio Interference Measuring Apparatus and Measurement Methods
CISPR 17 Passive Radio Interference Filters and Suppression Components
CISPR 18 Power Transmission Cables and High Voltage Equipments
CISPR 19 Microwave Ovens for Frequencies above 1GHz
CISPR 20 Immunity of Sound and TV Broadcast Receivers Receivers and Associated Equipment
CISPR 21 Interference to Mobile Radiocommunications in the Presence of Impulsive Noise
CISPR 22 Information Technology Equipment
CISPR 23 Industrial Scientific and Medical (ISM) Equipment
CISPR 24 Immunity Regulation of Information Technology Equipment

4. Limits of VCCI Voluntary Regulation

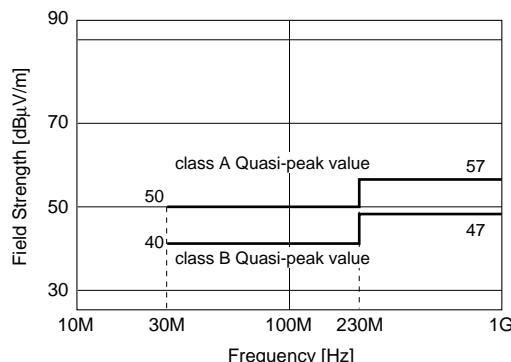
(1)VCCI recommend measurement at 10m distance. 3m or 30m distance measurement are also allowed.

(2)Scope of VCCI Voluntary Regulation

This regulation applies to information technology equipment (same as CISPR Pub.22), but the application is excluded on the following equipments :


- Equipment for which other regulations already exist (e.g., household electrical appliances, radio and TV receivers)
- In station equipment principal purpose of which is electrical communication
- Industrial plant control system for which information processing is a secondary system function
- Industrial, commercial and medical testing and measuring systems for which data processing is a secondary system function
- Information equipment for which CISPR is conducting further deliberation

VCCI is the acronym of Voluntary Control Council for Interference by Data Processing Equipment and Electronic Office Machines.


VCCI is organized by the following organizations :

- Japan Electronics and Information Technology Industries Association (JEITA)
- Japan Business Machine Makers Association (JBMA)
- Communication Industries Association of Japan (CIAJ)

[Mains Terminal Interference Voltage (Power Supply)]

[Radiated Interference]

On the border frequency, lower limit shall be applied.

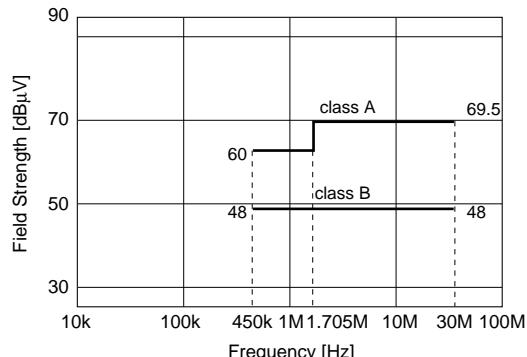
Class B ITE : Equipment that designed to be used at home.

Class A ITE : Equipment that does not meet interference limit of class B equipment. However satisfying interference limit of class A equipment.

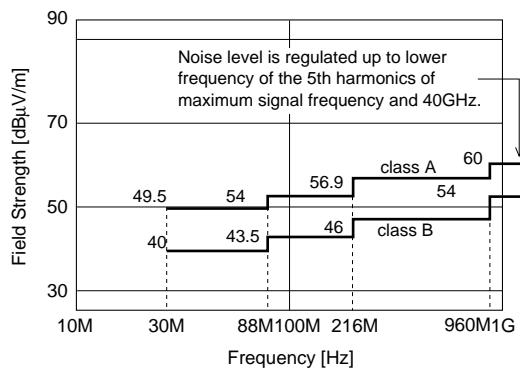
Continued on the following page.

Outlines of Major Noise Regulation Standards

Continued from the preceding page.


5. Limits of FCC Part 15 Subpart B

(1) Class A recommend to be measured with 10m distance.
Class B recommend to be measured with 3m distance.
(2) The FCC Part 15 regulation controls radiated interference by establishing quasi-peak and mean value limits for frequencies ranging from 30MHz to 40GHz (or maximum frequency's fifth harmonic, whichever is lower).
For AC main ports, the FCC Part 15 regulation controls mains terminal interference voltage by establishing quasi-peak value limits for frequencies ranging from 450kHz to 30MHz.


Measurement Frequency Range for Radiated Interference

Maximum Frequency the Equipment Internally Generates, Uses or Operates or Synchronizes (MHz)	Upper End of Measurement Frequency Range (MHz)
Less than 1.705	30
1.705 to 108	1000
108 to 500	2000
500 to 1000	5000
Over 1000	Maximum Frequency's Fifth Harmonic or 40GHz, Whichever is Lower

[Mains Terminal Interference Voltage (Power Supply)]

[Radiated Interference]

On the border frequency, lower limit shall be applied.

Class A Equipment : The digital equipment that is sold to in the commercial, industrial and office use.

Class B Equipment : The digital equipment that is sold to be used in residential area.

(3) There is no regulation on interference power.

[FCC Regulations]

- Part 1 Procedures
- Part 2 Frequency Division and Radio Wave Treaty Issues and General Rules
- Part 15 Radio Wave Equipment
 - Intentionally electromagnetic radiation equipment
 - Non-intentionally electromagnetic radiation equipment
 - Incidentally electromagnetic radiation equipment
- Part 18 Industrial, Scientific and Medical Equipment
- Part 22 Public Mobile Wireless Operations
- Part 68 Connecting Terminal Equipment to Telephone Circuit Network
- Part 76 Cable Television

Continued on the following page.

Outlines of Major Noise Regulation Standards

Continued from the preceding page.

6. Immunity Regulations in Europe Union

All electric/electronic equipment cannot be sold in Europe without CE marking. To use CE marking, they must satisfy related EC directive such as EMC directive.

For Information Technology Equipment, in EMC directive, emission regulations are integrated, and immunity regulations are applied. Although these immunity regulations are prepared by CENELEC, almost all contents are same as standards issued by IEC or CISPR.

All products which are sold in EU must satisfy EC directive which contains immunity regulation.

Principal EC Directive	
EMC Directive	89/336/EEC 92/31/EEC
Low-Voltage Electrical Products Directive	73/23/EEC
Machines Directive	89/392/EEC

Standard	Application	IEC	CISPR	CENELEC
Basic Standard		IEC61000-4 Series		EN61000-4 Series
Generic Standard		Residential, Commercial and Light Industry IEC61000-6-1 Industrial IEC61000-6-2	Residential, Commercial and Light Industry (CISPR61000-6-3) Industrial (CISPR61000-6-4)	Residential, Commercial and Light Industry EN50082-1 (EN50081-1) Industrial EN50082-2 (EN50081-2)
Product Family Standard	Radio, TV		CISPR 20 (CISPR 13)	EN55020 (EN55013)
	Information Technology Equipment		CISPR 24 (CISPR 22)	EN55024 (EN55022)
Product Standard				

Standards in bracket are Emission Standards.

Noise Suppression Principles by DC EMIFIL®

1. Function of DC EMI Suppression Filters

DC EMI suppression filters absorb and eliminate high frequency noise which may produce electromagnetic interference in PC board circuits.

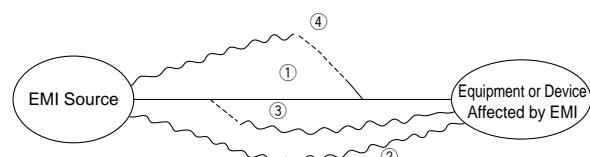
These filters are used in secondary circuits, and are small in size and light in weight, which further enhances their excellent noise suppression functions.

Chip and adhesive type filters can be mounted on PC boards automatically.

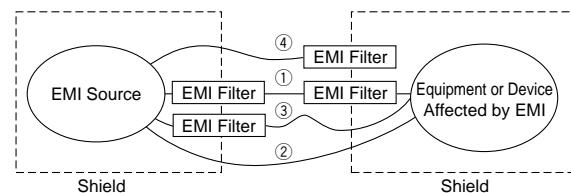
These filters are effective in the suppression of radiation noise in computers, peripheral equipment, and digital circuit application equipment (including various types of microcomputer application equipment), and function to suppress noise in audio/visual equipment, which uses digital memory chips and DSP.

These filters are also effective for improving the noise immunity of equipment used in noisy environments (such as electronic equipment for automobiles).

2. Noise Filter Suppression Principles


Generally, noise problems occur when the noise source and electronic equipment sensitive to the influence of noise are located in close proximity to one another.

In such situations, as shown in Fig, noise is conducted through a conductor, which produces an inductive field around the noise source.


To overcome such noise problems, it is preferable to reduce the amount of noise generated by the noise source or improve the noise resistance of adjacent equipment.

In order to satisfy equipment performance specifications and eliminate noise effectively at the same time, however, it is customary to reduce the amount of noise generated by the noise source, if it can't be eliminated altogether.

[EMI Propagation Mode and Model of Noise Filter Suppression]

①Conduction mode ③Conduction mode - Radiation mode
②Radiation mode ④Radiation mode - Conduction mode

3. Configuration of EMI Suppression Filters (DC)

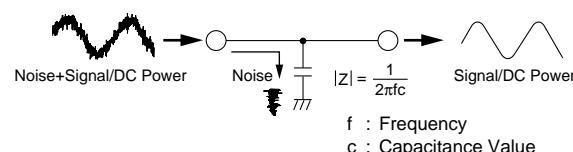
DC EMI suppression filters are used to suppress noise produced by conductors. Noise radiation can be suppressed, if it is eliminated with a filter in advance.

Generally, such noise suppression is achieved with DC EMI suppression filters, according to the capacitive and inductive frequency characteristics of the respective conductors in the circuit.

Filters of this kind can be roughly divided into those :

- (1) employing a capacitor,
- (2) employing an inductor,
- (3) employing a capacitor and inductor combination.

Continued on the following page.

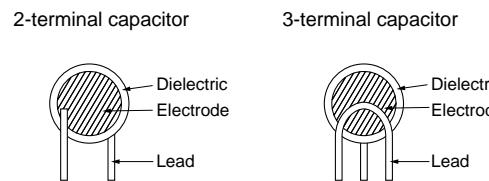

Noise Suppression Principles by DC EMIFIL®

Continued from the preceding page.

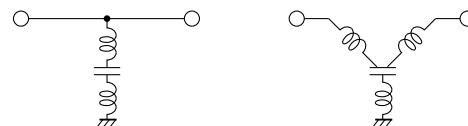
4. Capacitive Noise Suppression

When a capacitor is connected (bypass capacitor) to ground from a noisy signal line or power line, the circuit impedance decreases as the frequency increases. Since noise is a high frequency phenomenon, it flows to ground if a capacitor has been connected to ground, thereby making it possible to eliminate noise. (See Fig.) EMI suppression filters employing a capacitor in this way are used to eliminate this type of noise.

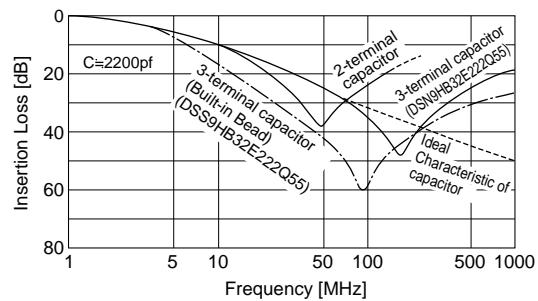
[Capacitive Noise Suppression]


5. High frequency Capacitor Characteristics Used for EMI Suppression Filters

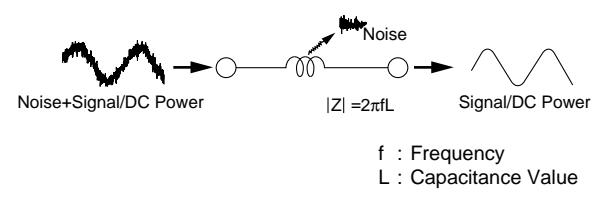
Even general-purpose capacitors can be used for noise suppression. However, since noise has an extremely high frequency range, general-purpose capacitors may not function as effective bypass capacitors, due to the large residual inductance built into the capacitor.


All the capacitors used in MURATA's EMI suppression filters employ a 3 terminal structure or thru-type structure, which functions effectively even at high frequencies, thereby minimizing the influence of residual inductance. Consequently, an effective filter circuit can be formed even at frequencies exceeding 1GHz. (Refer to Fig.)

[Equivalent circuit of general-purpose capacitor and 3 terminal capacitor in the high frequency area and comparison of insertion loss]


(a) Construction of capacitor

(b) Equivalent circuit of capacitors which is concerning ESL effect.


(c) Improvement of Insertion Loss Characteristics

6. Inductive Noise Suppression

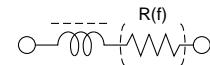
When an inductor is inserted in series in a noise producing circuit (See Fig.), its impedance increases with frequency. In this configuration it is possible to attenuate and eliminate noise components (high frequency components). The MURATA EMI suppression filter functions in this way.

[Inductive Noise Suppression]

Continued on the following page.

Noise Suppression Principles by DC EMIFIL®

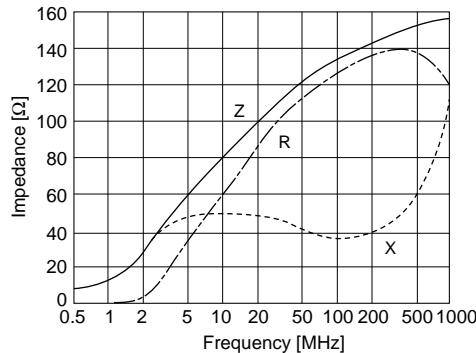
Continued from the preceding page.


7. Characteristics of Inductors Used

in EMI Suppression Filters

General-purpose inductors also function to suppress noise when configured in series with a noise producing circuit. However, when general-purpose inductors are used, resonance may result in peripheral circuits, signal wave forms may become distorted, and satisfactory impedance may not be obtained at noise frequencies (due to insufficient high frequency impedance characteristics).

The inductors used for MURATA's EMI suppression filters are designed to function nearly as a resistor at noise frequencies, which greatly reduces the possibility of resonance and leaves signal wave forms undistorted. And since sufficient impedance is obtained for frequencies ranging to hundreds of MHz, these specifically designed inductors operate effectively to suppress high-frequency noise. (See Fig.)


[Equivalent Circuit]

(Resistance element becomes dominant at high frequency.)

[Example of impedance frequency characteristics of inductor type EMIFIL®]

BL02RN2

8. Capacitive-Inductive EMI Suppression Filters

If a capacitive and inductive suppression characteristics are combined, it is possible to configure a much higher performance filter. In signal circuit applications where this combination is applied, noise suppression effects which have little influence on the signal wave form become possible.

This type of filter is also effective in the suppression of high-speed signal circuit noise. When used in DC power circuits, capacitive-inductive filters prevent resonance from occurring in peripheral circuits, thus making it possible to achieve significant noise suppression under normal service conditions.

9. Other EMI Suppression Filters

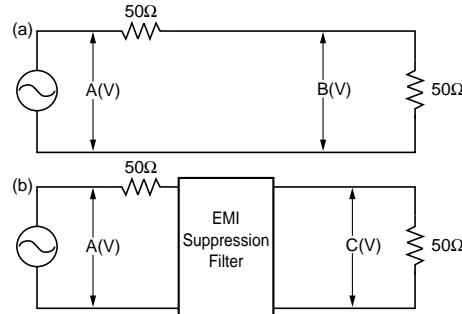
In addition to the capacitive-inductive filter, MURATA also has an EMI suppression filter (EMIGUARD®) combining a capacitor with a varistor, useful for surge absorption; and a common mode choke coil effective for common mode noise suppression.

MURATA also has a range of built-in filter connectors which greatly reduce filter mounting space requirements.

Continued on the following page.

Noise Suppression Principles by DC EMIFIL®

Continued from the preceding page.


10. Expressing EMI Suppression Filter Effects

EMI Suppression Filter effects are expressed in terms of the insertion loss measured in the circuit, normally specified in MIL-STD 220A. As shown in the 50Ω impedance circuit in Fig., insertion loss is represented by the logarithmic ratio of the circuit output voltage with and without a filter in the circuit, which is multiplied by 20 and expressed in dB.

Therefore, an insertion loss of 20dB indicates an output voltage ratio (B/C) of 1/10, and an insertion loss of 40dB indicates an output voltage ratio (B/C) of 1/100.

[Measuring Circuit of Insertion Loss]

Measuring Circuit of Insertion Loss

$$\text{Insertion Loss} = 20 \log \frac{B}{C} \text{ (dB)}$$

muRata

Murata EMI Filter Selection Simulator Ver.2.3.0

Differential Mode Transmission Circuit has been added

1 Select circuit.

(Select a new simulation circuit from File menu.)

- Simulation results with various charts are quickly displayed on your PC.
- Results can be displayed in standard format or user defined scaling.
- Simulates Differential Mode Transmission Circuit using common mode choke coil.
- Simulates ceramic capacitor, EMIFIL® capacitor type AND chip ferrite beads.

2 Enter "Input Signal".

1 Select circuit.

3 Set Driver IC.

Select a new simulation circuit from File menu.

4 Select filter.

(EMI filters or/and chip capacitor from the pull-down list.)

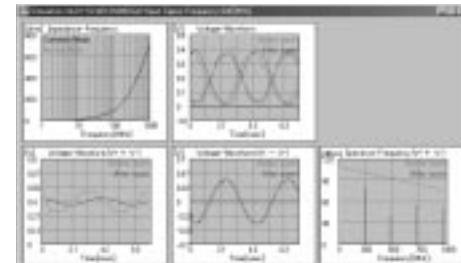
4 Filters can be selected from "frequency-impedance characteristics" charts.

5 Set Transmission Line.

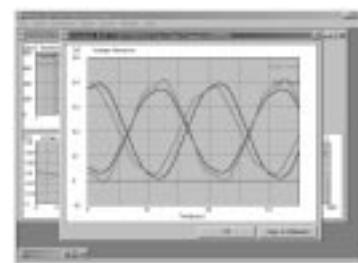
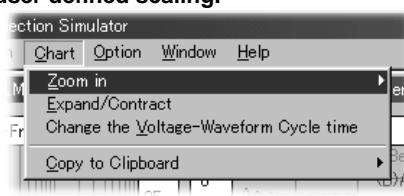
This software uses both the previous Part Numbers and the Global Part Numbers that have been adopted since June 2001.

By selecting "Global or previous Part Number" from the "View" menu, either part number can be converted into another.

6 Set Receiver IC.



7 Click measuring point.



(Only for chip ferrite bead)

8 Click "Start Simulation" button.

Differential Mode Transmission Circuit using common mode choke coil

9 Simulation results are displayed.

This simulator can be downloaded from Murata web site.

<http://www.murata.com/emi/>

EMIFIL is the trademark of Murata Manufacturing Co., Ltd.

⚠ Note:

1. Export Control
For customers outside Japan
Murata products should not be used or sold for use in the development, production, stockpiling or utilization of any conventional weapons or mass-destructive weapons (nuclear weapons, chemical or biological weapons, or missiles), or any other weapons.
For customers in Japan
For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export.
2. Please contact our sales representatives or product engineers before using our products listed in this catalog for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property, or when intending to use one of our products for other applications than specified in this catalog.
① Aircraft equipment ② Aerospace equipment
③ Undersea equipment ④ Power plant equipment
⑤ Medical equipment ⑥ Transportation equipment (vehicles, trains, ships, etc.)
⑦ Traffic signal equipment ⑧ Disaster prevention / crime prevention equipment
⑨ Data-processing equipment ⑩ Application of similar complexity and/or reliability requirements to the applications listed in the above
3. Product specifications in this catalog are as of July 2002. They are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or product engineers.
4. Please read rating and ⚠ CAUTION (for storage and operating, rating, soldering and mounting, handling) in this catalog to prevent smoking and/or burning, etc.
5. This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specification or transact the approval sheet for product specification before ordering.
6. Please read CAUTION and Notice in this catalog for safety. This catalog has only typical specifications. Therefore you are requested to approve our product specification or to transact the approval sheet for product specification, before ordering.
7. Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or third party's intellectual property rights and other related rights in consideration of your using our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.
8. No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.