

DM74ALS137 3 to 8 Line Decoder/Demultiplexer with Address Latches

General Description

The ALS137 is a three line to eight line decoder/demultiplexer with latches on the three address inputs. When the latch-enable input (\overline{GL}) is low, the ALS137 acts as a decoder/demultiplexer. When \overline{GL} goes from low to high, the address present at the select inputs (A, B, and C) is stored in the latches. Further address changes are ignored as long as \overline{GL} remains high. The output enable controls, G1 and $\overline{G2}$, control the state of the outputs independently of the select or latch-enable inputs. All of the outputs are high unless G1 is high and $\overline{G2}$ is low. The ALS137 is ideally suited for implementing glitch-free decoders in strobed (stored-address) applications in bus-oriented systems.

Connection Diagram

TL/F/6202-1

Order Number DM74ALS137M or DM74ALS137N
 See NS Package Number M16A or N16A

Features

- Combines decoder and 3-bit address latch
- Incorporates 3 enable inputs to simplify cascading
- Low power dissipation 28 mW typ
- Switching specifications guaranteed over full temperature and V_{CC} range
- Advanced oxide-isolated, ion-implanted Schottky TTL process

Function Table

Inputs			Outputs							
Enable	Select		Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
\overline{GL}	G1	$\overline{G2}$	C	B	A					
X	X	H	X	X	X	H	H	H	H	H
X	L	X	X	X	X	H	H	H	H	H
L	H	L	L	L	L	L	H	H	H	H
L	H	L	L	L	H	H	L	H	H	H
L	H	L	L	H	L	H	H	L	H	H
L	H	L	L	H	H	H	H	L	H	H
L	H	L	H	L	H	H	H	H	L	H
L	H	L	H	H	H	H	H	H	H	L
L	H	L	H	H	H	H	H	H	H	H
L	H	L	H	H	H	H	H	H	H	H
H	H	L	X	X	X	Output corresponding to stored address, L; all others, H				

L = Low State, H = High State, X = Don't Care

Absolute Maximum Ratings

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range DM74ALS	0°C to +70°C
Storage Temperature Range	−65°C to +150°C
Typical θ_{JA} N Package	75.5°C/W
M Package	104.0°C/W

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

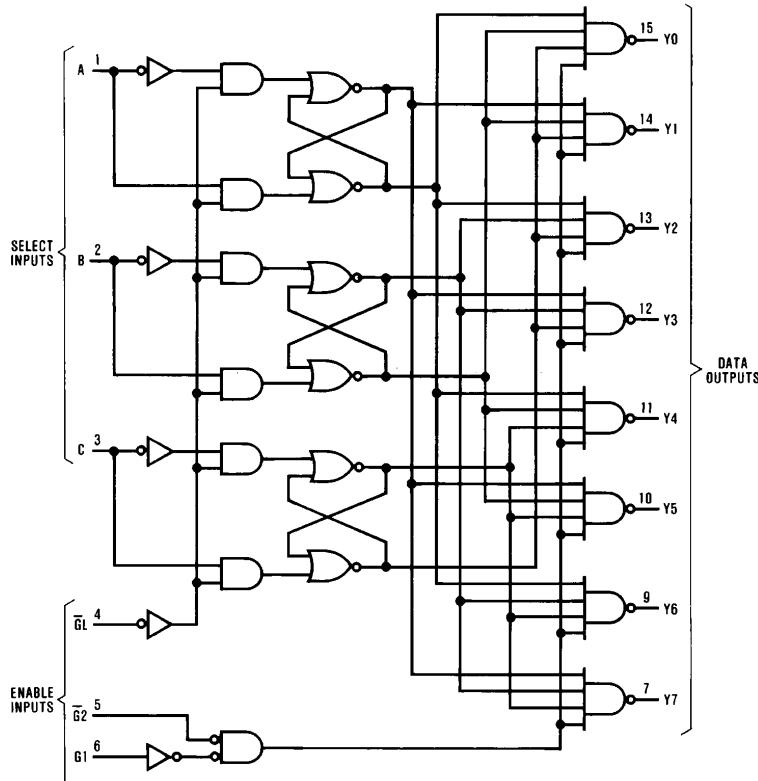
Symbol	Parameter		Min	Nom	Max	Units
V_{CC}	Supply Voltage		4.5	5	5.5	V
V_{IH}	High Level Input Voltage		2			V
V_{IL}	Low Level Input Voltage				0.8	V
I_{OH}	High Level Output Current				−0.4	mA
I_{OL}	Low Level Output Current				8	mA
t_W	Width of Enabling Pulse	\overline{GL} Low	10			ns
t_{SU}	Setup Time	A, B, C	10 ↑			ns
t_H	Hold Time	A, B, C	5 ↑			ns
T_A	Free Air Operating Temperature		0		70	°C

The arrow (↑) indicates the positive edge of the \overline{GL} input pulse is used for reference.

Electrical Characteristics

over recommended operating free air temperature range. All typical values are measured at $V_{CC} = 5V$, $T_A = 25^\circ C$.

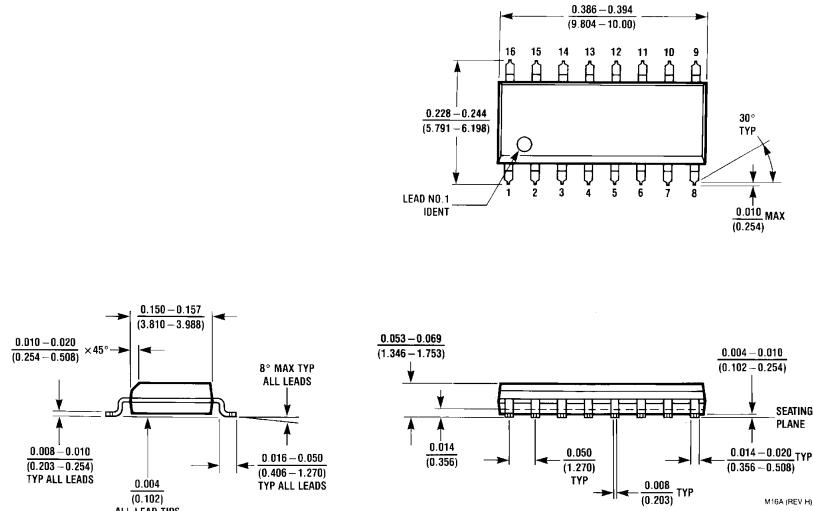
Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{IK}	Input Clamp Voltage	$V_{CC} = 4.5V$, $I_I = -18\text{ mA}$				−1.5	V
V_{OH}	High Level Output Voltage	$I_{OH} = -0.4\text{ mA}$ $V_{CC} = 4.5V$ to $5.5V$		$V_{CC} - 2$			V
V_{OL}	Low Level Output Voltage	$V_{CC} = 4.5V$	$I_{OL} = 4\text{ mA}$		0.25	0.4	V
			$I_{OL} = 8\text{ mA}$		0.35	0.5	V
I_I	Input Current @ Max. Input Voltage	$V_{CC} = 5.5V$ $V_{IH} = 7V$	Enable			0.1	mA
			A, B, C			0.1	
I_{IH}	High Level Input Current	$V_{CC} = 5.5V$ $V_{IH} = 2.7V$	Enable			20	μA
			A, B, C			20	
I_{IL}	Low Level Input Current	$V_{CC} = 5.5V$ $V_{IL} = 0.4V$	Enable			−0.1	mA
			A, B, C			−0.1	
I_O	Output Drive Current	$V_{CC} = 5.5V$, $V_O = 2.25V$	−30			−112	mA
I_{CC}	Supply Current	$V_{CC} = 5.5V$		5	11		mA


Switching Characteristics

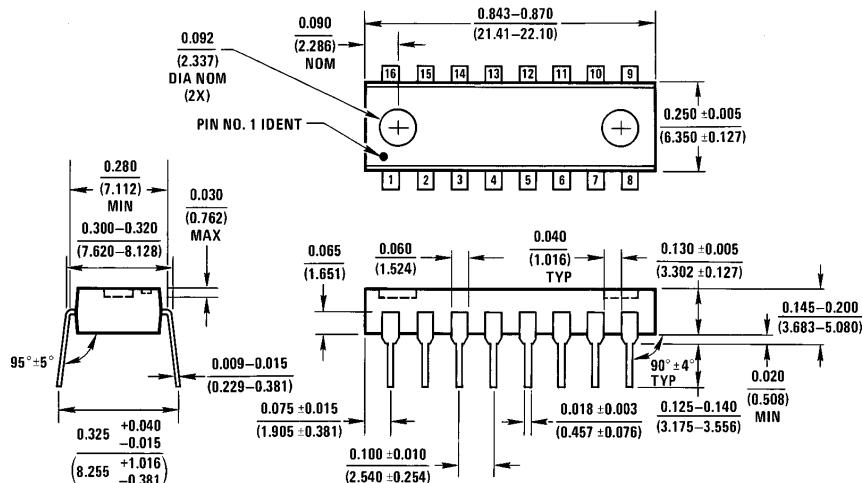
over recommended operating free air temperature range (Note 1).


Symbol	Parameter	Conditions	From (Input) To (Output)	Min	Max	Units
t_{PLH}	Propagation Delay Time Low to High Level Output	$V_{CC} = 4.5V \text{ to } 5.5V$ $R_L = 500\Omega$ $C_L = 50 \text{ pF}$	A, B, C to Y	5	20	ns
t_{PHL}	Propagation Delay Time High to Low Level Output		A, B, C to Y	6	20	ns
t_{PLH}	Propagation Delay Time Low to High Level Output		$\bar{G2}$ to Y	4	12	ns
t_{PHL}	Propagation Delay Time High to Low Level Output		$\bar{G2}$ to Y	5	15	ns
t_{PLH}	Propagation Delay Time Low to High Level Output		G1 to Y	5	17	ns
t_{PHL}	Propagation Delay Time High to Low Level Output		G1 to Y	5	15	ns
t_{PLH}	Propagation Delay Time Low to High Level Output		$\bar{G_L}$ to Y	7	22	ns
t_{PHL}	Propagation Delay Time High to Low Level Output		$\bar{G_L}$ to Y	7	20	ns

Note 1: See Section 5 for test waveforms and output load.


Logic Diagram

TL/F/6202-2



Physical Dimensions inches (millimeters)

S.O. Package (M)
Order Number DM74ALS137M
NS Package Number M16A

Physical Dimensions inches (millimeters) (Continued)

N16A (REV E)

Molded Dual-In-Line Package (N)
Order Number DM74ALS137N
NS Package Number N16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

**National Semiconductor
Corporation**
1111 West Bardin Road
Arlington, TX 76017
Tel: (800) 272-9959
Fax: (800) 737-7018

**National Semiconductor
Europe**
Fax: (+49) 0-180-530 85 86
Email: cnjwge@tevm2.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85
English Tel: (+49) 0-180-532 78 32
Français Tel: (+49) 0-180-532 93 58
Italiano Tel: (+49) 0-180-534 16 80

**National Semiconductor
Hong Kong Ltd.**
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon
Hong Kong
Tel: (852) 2737-1600
Fax: (852) 2736-9960

**National Semiconductor
Japan Ltd.**
Tel: 81-043-299-2309
Fax: 81-043-299-2406

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.